| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459 |
- import math
- import copy
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from .mlp import FFN
- def get_clones(module, N):
- if N <= 0:
- return None
- else:
- return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
- def inverse_sigmoid(x, eps=1e-5):
- x = x.clamp(min=0., max=1.)
- return torch.log(x.clamp(min=eps) / (1 - x).clamp(min=eps))
- # ----------------- Basic Transformer Ops -----------------
- def multi_scale_deformable_attn_pytorch(
- value: torch.Tensor,
- value_spatial_shapes: torch.Tensor,
- sampling_locations: torch.Tensor,
- attention_weights: torch.Tensor,
- ) -> torch.Tensor:
- bs, _, num_heads, embed_dims = value.shape
- _, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
-
- value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1)
- sampling_grids = 2 * sampling_locations - 1
- sampling_value_list = []
- for level, (H_, W_) in enumerate(value_spatial_shapes):
- # bs, H_*W_, num_heads, embed_dims ->
- # bs, H_*W_, num_heads*embed_dims ->
- # bs, num_heads*embed_dims, H_*W_ ->
- # bs*num_heads, embed_dims, H_, W_
- value_l_ = (
- value_list[level].flatten(2).transpose(1, 2).reshape(bs * num_heads, embed_dims, H_, W_)
- )
- # bs, num_queries, num_heads, num_points, 2 ->
- # bs, num_heads, num_queries, num_points, 2 ->
- # bs*num_heads, num_queries, num_points, 2
- sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(1, 2).flatten(0, 1)
- # bs*num_heads, embed_dims, num_queries, num_points
- sampling_value_l_ = F.grid_sample(
- value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False
- )
- sampling_value_list.append(sampling_value_l_)
- # (bs, num_queries, num_heads, num_levels, num_points) ->
- # (bs, num_heads, num_queries, num_levels, num_points) ->
- # (bs, num_heads, 1, num_queries, num_levels*num_points)
- attention_weights = attention_weights.transpose(1, 2).reshape(
- bs * num_heads, 1, num_queries, num_levels * num_points
- )
- output = (
- (torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
- .sum(-1)
- .view(bs, num_heads * embed_dims, num_queries)
- )
- return output.transpose(1, 2).contiguous()
- class MSDeformableAttention(nn.Module):
- def __init__(self,
- embed_dim=256,
- num_heads=8,
- num_levels=4,
- num_points=4):
- """
- Multi-Scale Deformable Attention Module
- """
- super(MSDeformableAttention, self).__init__()
- self.embed_dim = embed_dim
- self.num_heads = num_heads
- self.num_levels = num_levels
- self.num_points = num_points
- self.total_points = num_heads * num_levels * num_points
- self.head_dim = embed_dim // num_heads
- assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
- self.sampling_offsets = nn.Linear(embed_dim, self.total_points * 2)
- self.attention_weights = nn.Linear(embed_dim, self.total_points)
- self.value_proj = nn.Linear(embed_dim, embed_dim)
- self.output_proj = nn.Linear(embed_dim, embed_dim)
-
- try:
- # use cuda op
- from deformable_detr_ops import ms_deformable_attn
- self.ms_deformable_attn_core = ms_deformable_attn
- except:
- # use torch func
- self.ms_deformable_attn_core = multi_scale_deformable_attn_pytorch
- self._reset_parameters()
- def _reset_parameters(self):
- """
- Default initialization for Parameters of Module.
- """
- nn.init.constant_(self.sampling_offsets.weight.data, 0.0)
- thetas = torch.arange(self.num_heads, dtype=torch.float32) * (
- 2.0 * math.pi / self.num_heads
- )
- grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
- grid_init = (
- (grid_init / grid_init.abs().max(-1, keepdim=True)[0])
- .view(self.num_heads, 1, 1, 2)
- .repeat(1, self.num_levels, self.num_points, 1)
- )
- for i in range(self.num_points):
- grid_init[:, :, i, :] *= i + 1
- with torch.no_grad():
- self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
- # attention weight
- nn.init.constant_(self.attention_weights.weight, 0.0)
- nn.init.constant_(self.attention_weights.bias, 0.0)
- # proj
- nn.init.xavier_uniform_(self.value_proj.weight)
- nn.init.constant_(self.value_proj.bias, 0.0)
- nn.init.xavier_uniform_(self.output_proj.weight)
- nn.init.constant_(self.output_proj.bias, 0.0)
- def forward(self,
- query,
- reference_points,
- value,
- value_spatial_shapes,
- value_mask=None):
- """
- Args:
- query (Tensor): [bs, query_length, C]
- reference_points (Tensor): [bs, query_length, n_levels, 2], range in [0, 1], top-left (0,0),
- bottom-right (1, 1), including padding area
- value (Tensor): [bs, value_length, C]
- value_spatial_shapes (Tensor): [n_levels, 2], [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})]
- value_mask (Tensor): [bs, value_length], True for non-padding elements, False for padding elements
- Returns:
- output (Tensor): [bs, Length_{query}, C]
- """
- bs, num_query = query.shape[:2]
- num_value = value.shape[1]
- assert sum([s[0] * s[1] for s in value_spatial_shapes]) == num_value
- # Value projection
- value = self.value_proj(value)
- # fill "0" for the padding part
- if value_mask is not None:
- value_mask = value_mask.astype(value.dtype).unsqueeze(-1)
- value *= value_mask
- # [bs, all_hw, 256] -> [bs, all_hw, num_head, head_dim]
- value = value.reshape([bs, num_value, self.num_heads, -1])
- # [bs, all_hw, num_head, nun_level, num_sample_point, num_offset]
- sampling_offsets = self.sampling_offsets(query).reshape(
- [bs, num_query, self.num_heads, self.num_levels, self.num_points, 2])
- # [bs, all_hw, num_head, nun_level*num_sample_point]
- attention_weights = self.attention_weights(query).reshape(
- [bs, num_query, self.num_heads, self.num_levels * self.num_points])
- # [bs, all_hw, num_head, nun_level, num_sample_point]
- attention_weights = attention_weights.softmax(-1).reshape(
- [bs, num_query, self.num_heads, self.num_levels, self.num_points])
- # [bs, num_query, num_heads, num_levels, num_points, 2]
- if reference_points.shape[-1] == 2:
- # reference_points [bs, all_hw, num_sample_point, 2] -> [bs, all_hw, 1, num_sample_point, 1, 2]
- # sampling_offsets [bs, all_hw, nun_head, num_level, num_sample_point, 2]
- # offset_normalizer [4, 2] -> [1, 1, 1, num_sample_point, 1, 2]
- # references_points + sampling_offsets
- offset_normalizer = value_spatial_shapes.flip([1]).reshape(
- [1, 1, 1, self.num_levels, 1, 2])
- sampling_locations = (
- reference_points[:, :, None, :, None, :]
- + sampling_offsets / offset_normalizer
- )
- elif reference_points.shape[-1] == 4:
- sampling_locations = (
- reference_points[:, :, None, :, None, :2]
- + sampling_offsets
- / self.num_points
- * reference_points[:, :, None, :, None, 2:]
- * 0.5)
- else:
- raise ValueError(
- "Last dim of reference_points must be 2 or 4, but get {} instead.".
- format(reference_points.shape[-1]))
- # Multi-scale Deformable attention
- output = self.ms_deformable_attn_core(
- value, value_spatial_shapes, sampling_locations, attention_weights)
-
- # Output project
- output = self.output_proj(output)
- return output
- # ----------------- Transformer modules -----------------
- ## Transformer Encoder layer
- class TransformerEncoderLayer(nn.Module):
- def __init__(self,
- d_model :int = 256,
- num_heads :int = 8,
- ffn_dim :int = 1024,
- dropout :float = 0.1,
- act_type :str = "relu",
- ):
- super().__init__()
- # ----------- Basic parameters -----------
- self.d_model = d_model
- self.num_heads = num_heads
- self.ffn_dim = ffn_dim
- self.dropout = dropout
- self.act_type = act_type
- # ----------- Basic parameters -----------
- # Multi-head Self-Attn
- self.self_attn = nn.MultiheadAttention(d_model, num_heads, dropout=dropout, batch_first=True)
- self.dropout = nn.Dropout(dropout)
- self.norm = nn.LayerNorm(d_model)
- # Feedforwaed Network
- self.ffn = FFN(d_model, ffn_dim, dropout, act_type)
- def with_pos_embed(self, tensor, pos):
- return tensor if pos is None else tensor + pos
- def forward(self, src, pos_embed):
- """
- Input:
- src: [torch.Tensor] -> [B, N, C]
- pos_embed: [torch.Tensor] -> [B, N, C]
- Output:
- src: [torch.Tensor] -> [B, N, C]
- """
- q = k = self.with_pos_embed(src, pos_embed)
- # -------------- MHSA --------------
- src2 = self.self_attn(q, k, value=src)[0]
- src = src + self.dropout(src2)
- src = self.norm(src)
- # -------------- FFN --------------
- src = self.ffn(src)
-
- return src
- ## Transformer Encoder
- class TransformerEncoder(nn.Module):
- def __init__(self,
- d_model :int = 256,
- num_heads :int = 8,
- num_layers :int = 1,
- ffn_dim :int = 1024,
- pe_temperature : float = 10000.,
- dropout :float = 0.1,
- act_type :str = "relu",
- ):
- super().__init__()
- # ----------- Basic parameters -----------
- self.d_model = d_model
- self.num_heads = num_heads
- self.num_layers = num_layers
- self.ffn_dim = ffn_dim
- self.dropout = dropout
- self.act_type = act_type
- self.pe_temperature = pe_temperature
- self.pos_embed = None
- # ----------- Basic parameters -----------
- self.encoder_layers = get_clones(
- TransformerEncoderLayer(d_model, num_heads, ffn_dim, dropout, act_type), num_layers)
- def build_2d_sincos_position_embedding(self, device, w, h, embed_dim=256, temperature=10000.):
- assert embed_dim % 4 == 0, \
- 'Embed dimension must be divisible by 4 for 2D sin-cos position embedding'
-
- # ----------- Check cahed pos_embed -----------
- if self.pos_embed is not None and \
- self.pos_embed.shape[2:] == [h, w]:
- return self.pos_embed
-
- # ----------- Generate grid coords -----------
- grid_w = torch.arange(int(w), dtype=torch.float32)
- grid_h = torch.arange(int(h), dtype=torch.float32)
- grid_w, grid_h = torch.meshgrid([grid_w, grid_h]) # shape: [H, W]
- pos_dim = embed_dim // 4
- omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
- omega = 1. / (temperature**omega)
- out_w = grid_w.flatten()[..., None] @ omega[None] # shape: [N, C]
- out_h = grid_h.flatten()[..., None] @ omega[None] # shape: [N, C]
- # shape: [1, N, C]
- pos_embed = torch.cat([torch.sin(out_w), torch.cos(out_w), torch.sin(out_h),torch.cos(out_h)], dim=1)[None, :, :]
- pos_embed = pos_embed.to(device)
- self.pos_embed = pos_embed
- return pos_embed
- def forward(self, src):
- """
- Input:
- src: [torch.Tensor] -> [B, C, H, W]
- Output:
- src: [torch.Tensor] -> [B, C, H, W]
- """
- # -------- Transformer encoder --------
- channels, fmp_h, fmp_w = src.shape[1:]
- # [B, C, H, W] -> [B, N, C], N=HxW
- src_flatten = src.flatten(2).permute(0, 2, 1).contiguous()
- memory = src_flatten
- # PosEmbed: [1, N, C]
- pos_embed = self.build_2d_sincos_position_embedding(
- src.device, fmp_w, fmp_h, channels, self.pe_temperature)
-
- # Transformer Encoder layer
- for encoder in self.encoder_layers:
- memory = encoder(memory, pos_embed=pos_embed)
- # Output: [B, N, C] -> [B, C, N] -> [B, C, H, W]
- src = memory.permute(0, 2, 1).contiguous()
- src = src.view([-1, channels, fmp_h, fmp_w])
- return src
- ## Transformer Decoder layer
- class DeformableTransformerDecoderLayer(nn.Module):
- def __init__(self,
- d_model :int = 256,
- num_heads :int = 8,
- num_levels :int = 3,
- num_points :int = 4,
- ffn_dim :int = 1024,
- dropout :float = 0.1,
- act_type :str = "relu",
- ):
- super().__init__()
- # ----------- Basic parameters -----------
- self.d_model = d_model
- self.num_heads = num_heads
- self.num_levels = num_levels
- self.num_points = num_points
- self.ffn_dim = ffn_dim
- self.dropout = dropout
- self.act_type = act_type
- # ---------------- Network parameters ----------------
- ## Multi-head Self-Attn
- self.self_attn = nn.MultiheadAttention(d_model, num_heads, dropout=dropout, batch_first=True)
- self.dropout1 = nn.Dropout(dropout)
- self.norm1 = nn.LayerNorm(d_model)
- ## CrossAttention
- self.cross_attn = MSDeformableAttention(d_model, num_heads, num_levels, num_points)
- self.dropout2 = nn.Dropout(dropout)
- self.norm2 = nn.LayerNorm(d_model)
- ## FFN
- self.ffn = FFN(d_model, ffn_dim, dropout, act_type)
- def with_pos_embed(self, tensor, pos):
- return tensor if pos is None else tensor + pos
- def forward(self,
- tgt,
- reference_points,
- memory,
- memory_spatial_shapes,
- attn_mask=None,
- memory_mask=None,
- query_pos_embed=None):
- # ---------------- MSHA for Object Query -----------------
- q = k = self.with_pos_embed(tgt, query_pos_embed)
- tgt2 = self.self_attn(q, k, value=tgt, attn_mask=attn_mask)[0]
- tgt = tgt + self.dropout1(tgt2)
- tgt = self.norm1(tgt)
- # ---------------- CMHA for Object Query and Image-feature -----------------
- tgt2 = self.cross_attn(self.with_pos_embed(tgt, query_pos_embed),
- reference_points,
- memory,
- memory_spatial_shapes,
- memory_mask)
- tgt = tgt + self.dropout2(tgt2)
- tgt = self.norm2(tgt)
- # ---------------- FeedForward Network -----------------
- tgt = self.ffn(tgt)
- return tgt
- ## Transformer Decoder
- class DeformableTransformerDecoder(nn.Module):
- def __init__(self,
- d_model :int = 256,
- num_heads :int = 8,
- num_layers :int = 1,
- num_levels :int = 3,
- num_points :int = 4,
- ffn_dim :int = 1024,
- dropout :float = 0.1,
- act_type :str = "relu",
- return_intermediate :bool = False,
- ):
- super().__init__()
- # ----------- Basic parameters -----------
- self.d_model = d_model
- self.num_heads = num_heads
- self.num_layers = num_layers
- self.ffn_dim = ffn_dim
- self.dropout = dropout
- self.act_type = act_type
- self.pos_embed = None
- # ----------- Network parameters -----------
- self.decoder_layers = get_clones(
- DeformableTransformerDecoderLayer(d_model, num_heads, num_levels, num_points, ffn_dim, dropout, act_type), num_layers)
- self.num_layers = num_layers
- self.return_intermediate = return_intermediate
- def forward(self,
- tgt,
- ref_points_unact,
- memory,
- memory_spatial_shapes,
- bbox_head,
- score_head,
- query_pos_head,
- attn_mask=None,
- memory_mask=None):
- output = tgt
- dec_out_bboxes = []
- dec_out_logits = []
- ref_points_detach = F.sigmoid(ref_points_unact)
- for i, layer in enumerate(self.decoder_layers):
- ref_points_input = ref_points_detach.unsqueeze(2)
- query_pos_embed = query_pos_head(ref_points_detach)
- output = layer(output, ref_points_input, memory,
- memory_spatial_shapes, attn_mask,
- memory_mask, query_pos_embed)
- inter_ref_bbox = F.sigmoid(bbox_head[i](output) + inverse_sigmoid(ref_points_detach))
- dec_out_logits.append(score_head[i](output))
- if i == 0:
- dec_out_bboxes.append(inter_ref_bbox)
- else:
- dec_out_bboxes.append(
- F.sigmoid(bbox_head[i](output) + inverse_sigmoid(ref_points)))
- ref_points = inter_ref_bbox
- ref_points_detach = inter_ref_bbox.detach() if self.training else inter_ref_bbox
- return torch.stack(dec_out_bboxes), torch.stack(dec_out_logits)
|