| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125 |
- import torch
- import torch.nn as nn
- from .gelan_basic import BasicConv
- # Single-level Head
- class SingleLevelHead(nn.Module):
- def __init__(self,
- in_dim :int = 256,
- cls_head_dim :int = 256,
- reg_head_dim :int = 256,
- num_cls_head :int = 2,
- num_reg_head :int = 2,
- act_type :str = "silu",
- norm_type :str = "BN",
- depthwise :bool = False):
- super().__init__()
- # --------- Basic Parameters ----------
- self.in_dim = in_dim
- self.num_cls_head = num_cls_head
- self.num_reg_head = num_reg_head
- self.act_type = act_type
- self.norm_type = norm_type
- self.depthwise = depthwise
-
- # --------- Network Parameters ----------
- ## cls head
- cls_feats = []
- self.cls_head_dim = cls_head_dim
- for i in range(num_cls_head):
- if i == 0:
- cls_feats.append(
- BasicConv(in_dim, self.cls_head_dim,
- kernel_size=3, padding=1, stride=1,
- act_type=act_type,
- norm_type=norm_type,
- depthwise=depthwise)
- )
- else:
- cls_feats.append(
- BasicConv(self.cls_head_dim, self.cls_head_dim,
- kernel_size=3, padding=1, stride=1,
- act_type=act_type,
- norm_type=norm_type,
- depthwise=depthwise)
- )
- ## reg head
- reg_feats = []
- self.reg_head_dim = reg_head_dim
- for i in range(num_reg_head):
- if i == 0:
- reg_feats.append(
- BasicConv(in_dim, self.reg_head_dim,
- kernel_size=3, padding=1, stride=1,
- act_type=act_type,
- norm_type=norm_type,
- depthwise=depthwise)
- )
- else:
- reg_feats.append(
- BasicConv(self.reg_head_dim, self.reg_head_dim,
- kernel_size=3, padding=1, stride=1, group=4,
- act_type=act_type,
- norm_type=norm_type,
- depthwise=depthwise)
- )
- self.cls_feats = nn.Sequential(*cls_feats)
- self.reg_feats = nn.Sequential(*reg_feats)
- self.init_weights()
-
- def init_weights(self):
- """Initialize the parameters."""
- for m in self.modules():
- if isinstance(m, torch.nn.Conv2d):
- # In order to be consistent with the source code,
- # reset the Conv2d initialization parameters
- m.reset_parameters()
- def forward(self, x):
- """
- in_feats: (Tensor) [B, C, H, W]
- """
- cls_feats = self.cls_feats(x)
- reg_feats = self.reg_feats(x)
- return cls_feats, reg_feats
-
- # Multi-level Head
- class GElanDetHead(nn.Module):
- def __init__(self, cfg, in_dims):
- super().__init__()
- ## ----------- Network Parameters -----------
- self.multi_level_heads = nn.ModuleList(
- [SingleLevelHead(in_dim = in_dims[level],
- cls_head_dim = max(in_dims[0], min(cfg.num_classes * 2, 128)),
- reg_head_dim = max(in_dims[0]//4, 16, 4*cfg.reg_max),
- num_cls_head = cfg.num_cls_head,
- num_reg_head = cfg.num_reg_head,
- act_type = cfg.head_act,
- norm_type = cfg.head_norm,
- depthwise = cfg.head_depthwise)
- for level in range(cfg.num_levels)
- ])
- # --------- Basic Parameters ----------
- self.in_dims = in_dims
- self.cls_head_dim = self.multi_level_heads[0].cls_head_dim
- self.reg_head_dim = self.multi_level_heads[0].reg_head_dim
- def forward(self, feats):
- """
- feats: List[(Tensor)] [[B, C, H, W], ...]
- """
- cls_feats = []
- reg_feats = []
- for feat, head in zip(feats, self.multi_level_heads):
- # ---------------- Pred ----------------
- cls_feat, reg_feat = head(feat)
- cls_feats.append(cls_feat)
- reg_feats.append(reg_feat)
- return cls_feats, reg_feats
|