gelan.py 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165
  1. # --------------- Torch components ---------------
  2. import torch
  3. import torch.nn as nn
  4. # --------------- Model components ---------------
  5. from .gelan_backbone import build_backbone
  6. from .gelan_neck import SPPElan
  7. from .gelan_pafpn import GElanPaFPN
  8. from .gelan_head import GElanDetHead
  9. from .gelan_pred import GElanPredLayer
  10. # --------------- External components ---------------
  11. from utils.misc import multiclass_nms
  12. # G-ELAN proposed by YOLOv9
  13. class GElan(nn.Module):
  14. def __init__(self,
  15. cfg,
  16. is_val = False,
  17. deploy = False,
  18. ) -> None:
  19. super(GElan, self).__init__()
  20. # ---------------------- Basic setting ----------------------
  21. self.cfg = cfg
  22. self.deploy = deploy
  23. self.num_classes = cfg.num_classes
  24. ## Post-process parameters
  25. self.topk_candidates = cfg.val_topk if is_val else cfg.test_topk
  26. self.conf_thresh = cfg.val_conf_thresh if is_val else cfg.test_conf_thresh
  27. self.nms_thresh = cfg.val_nms_thresh if is_val else cfg.test_nms_thresh
  28. self.no_multi_labels = False if is_val else True
  29. # ---------------------- Network Parameters ----------------------
  30. ## Backbone
  31. self.backbone = build_backbone(cfg)
  32. self.neck = SPPElan(cfg, self.backbone.feat_dims[-1])
  33. self.backbone.feat_dims[-1] = self.neck.out_dim
  34. ## PaFPN
  35. self.fpn = GElanPaFPN(cfg, self.backbone.feat_dims)
  36. ## Detection head
  37. self.head = GElanDetHead(cfg, self.fpn.out_dims)
  38. self.pred = GElanPredLayer(cfg, self.head.cls_head_dim, self.head.reg_head_dim)
  39. def switch_to_deploy(self,):
  40. for m in self.modules():
  41. if hasattr(m, "fuse_convs"):
  42. m.fuse_convs()
  43. def post_process(self, cls_preds, box_preds):
  44. """
  45. Input:
  46. cls_preds: List[torch.Tensor] -> [[B, M, C], ...], B=1
  47. box_preds: List[torch.Tensor] -> [[B, M, 4], ...], B=1
  48. Output:
  49. bboxes: np.array -> [N, 4]
  50. scores: np.array -> [N,]
  51. labels: np.array -> [N,]
  52. """
  53. all_scores = []
  54. all_labels = []
  55. all_bboxes = []
  56. for cls_pred_i, box_pred_i in zip(cls_preds, box_preds):
  57. cls_pred_i = cls_pred_i[0]
  58. box_pred_i = box_pred_i[0]
  59. if self.no_multi_labels:
  60. # [M,]
  61. scores, labels = torch.max(cls_pred_i.sigmoid(), dim=1)
  62. # Keep top k top scoring indices only.
  63. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  64. # topk candidates
  65. predicted_prob, topk_idxs = scores.sort(descending=True)
  66. topk_scores = predicted_prob[:num_topk]
  67. topk_idxs = topk_idxs[:num_topk]
  68. # filter out the proposals with low confidence score
  69. keep_idxs = topk_scores > self.conf_thresh
  70. scores = topk_scores[keep_idxs]
  71. topk_idxs = topk_idxs[keep_idxs]
  72. labels = labels[topk_idxs]
  73. bboxes = box_pred_i[topk_idxs]
  74. else:
  75. # [M, C] -> [MC,]
  76. scores_i = cls_pred_i.sigmoid().flatten()
  77. # Keep top k top scoring indices only.
  78. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  79. # torch.sort is actually faster than .topk (at least on GPUs)
  80. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  81. topk_scores = predicted_prob[:num_topk]
  82. topk_idxs = topk_idxs[:num_topk]
  83. # filter out the proposals with low confidence score
  84. keep_idxs = topk_scores > self.conf_thresh
  85. scores = topk_scores[keep_idxs]
  86. topk_idxs = topk_idxs[keep_idxs]
  87. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  88. labels = topk_idxs % self.num_classes
  89. bboxes = box_pred_i[anchor_idxs]
  90. all_scores.append(scores)
  91. all_labels.append(labels)
  92. all_bboxes.append(bboxes)
  93. scores = torch.cat(all_scores, dim=0)
  94. labels = torch.cat(all_labels, dim=0)
  95. bboxes = torch.cat(all_bboxes, dim=0)
  96. # to cpu & numpy
  97. scores = scores.cpu().numpy()
  98. labels = labels.cpu().numpy()
  99. bboxes = bboxes.cpu().numpy()
  100. # nms
  101. scores, labels, bboxes = multiclass_nms(
  102. scores, labels, bboxes, self.nms_thresh, self.num_classes)
  103. return bboxes, scores, labels
  104. def forward(self, x):
  105. # ---------------- Backbone ----------------
  106. pyramid_feats = self.backbone(x)
  107. # ---------------- Neck: SPP ----------------
  108. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  109. # ---------------- Neck: PaFPN ----------------
  110. pyramid_feats = self.fpn(pyramid_feats)
  111. # ---------------- Heads ----------------
  112. cls_feats, reg_feats = self.head(pyramid_feats)
  113. # ---------------- Preds ----------------
  114. outputs = self.pred(cls_feats, reg_feats)
  115. outputs['image_size'] = [x.shape[2], x.shape[3]]
  116. if not self.training:
  117. all_cls_preds = outputs['pred_cls']
  118. all_box_preds = outputs['pred_box']
  119. if self.deploy:
  120. cls_preds = torch.cat(all_cls_preds, dim=1)[0]
  121. box_preds = torch.cat(all_box_preds, dim=1)[0]
  122. scores = cls_preds.sigmoid()
  123. bboxes = box_preds
  124. # [n_anchors_all, 4 + C]
  125. outputs = torch.cat([bboxes, scores], dim=-1)
  126. else:
  127. # post process
  128. bboxes, scores, labels = self.post_process(all_cls_preds, all_box_preds)
  129. outputs = {
  130. "scores": scores,
  131. "labels": labels,
  132. "bboxes": bboxes
  133. }
  134. return outputs