| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from utils.box_ops import bbox_iou
- # -------------------------- Task Aligned Assigner --------------------------
- class TaskAlignedAssigner(nn.Module):
- """
- This code referenced to https://github.com/ultralytics/ultralytics
- """
- def __init__(self,
- num_classes = 80,
- topk_candidates = 10,
- alpha = 0.5,
- beta = 6.0,
- eps = 1e-9):
- super(TaskAlignedAssigner, self).__init__()
- self.topk_candidates = topk_candidates
- self.num_classes = num_classes
- self.bg_idx = num_classes
- self.alpha = alpha
- self.beta = beta
- self.eps = eps
- @torch.no_grad()
- def forward(self,
- pd_scores,
- pd_bboxes,
- anc_points,
- gt_labels,
- gt_bboxes):
- self.bs = pd_scores.size(0)
- self.n_max_boxes = gt_bboxes.size(1)
- mask_pos, align_metric, overlaps = self.get_pos_mask(
- pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points)
- target_gt_idx, fg_mask, mask_pos = select_highest_overlaps(
- mask_pos, overlaps, self.n_max_boxes)
- # Assigned target
- target_labels, target_bboxes, target_scores = self.get_targets(
- gt_labels, gt_bboxes, target_gt_idx, fg_mask)
- # normalize
- align_metric *= mask_pos
- pos_align_metrics = align_metric.amax(axis=-1, keepdim=True) # b, max_num_obj
- pos_overlaps = (overlaps * mask_pos).amax(axis=-1, keepdim=True) # b, max_num_obj
- norm_align_metric = (align_metric * pos_overlaps / (pos_align_metrics + self.eps)).amax(-2).unsqueeze(-1)
- target_scores = target_scores * norm_align_metric
- return target_labels, target_bboxes, target_scores, fg_mask.bool(), target_gt_idx
- def get_pos_mask(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points):
- # get in_gts mask, (b, max_num_obj, h*w)
- mask_in_gts = select_candidates_in_gts(anc_points, gt_bboxes)
- # get anchor_align metric, (b, max_num_obj, h*w)
- align_metric, overlaps = self.get_box_metrics(pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_in_gts)
- # get topk_metric mask, (b, max_num_obj, h*w)
- mask_topk = self.select_topk_candidates(align_metric)
- # merge all mask to a final mask, (b, max_num_obj, h*w)
- mask_pos = mask_topk * mask_in_gts
- return mask_pos, align_metric, overlaps
- def get_box_metrics(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_in_gts):
- """Compute alignment metric given predicted and ground truth bounding boxes."""
- na = pd_bboxes.shape[-2]
- mask_in_gts = mask_in_gts.bool() # b, max_num_obj, h*w
- overlaps = torch.zeros([self.bs, self.n_max_boxes, na], dtype=pd_bboxes.dtype, device=pd_bboxes.device)
- bbox_scores = torch.zeros([self.bs, self.n_max_boxes, na], dtype=pd_scores.dtype, device=pd_scores.device)
- ind = torch.zeros([2, self.bs, self.n_max_boxes], dtype=torch.long) # 2, b, max_num_obj
- ind[0] = torch.arange(end=self.bs).view(-1, 1).expand(-1, self.n_max_boxes) # b, max_num_obj
- ind[1] = gt_labels.squeeze(-1) # b, max_num_obj
- # Get the scores of each grid for each gt cls
- bbox_scores[mask_in_gts] = pd_scores[ind[0], :, ind[1]][mask_in_gts] # b, max_num_obj, h*w
- # (b, max_num_obj, 1, 4), (b, 1, h*w, 4)
- pd_boxes = pd_bboxes.unsqueeze(1).expand(-1, self.n_max_boxes, -1, -1)[mask_in_gts]
- gt_boxes = gt_bboxes.unsqueeze(2).expand(-1, -1, na, -1)[mask_in_gts]
- overlaps[mask_in_gts] = bbox_iou(gt_boxes, pd_boxes, xywh=False, CIoU=True).squeeze(-1).clamp_(0)
- align_metric = bbox_scores.pow(self.alpha) * overlaps.pow(self.beta)
- return align_metric, overlaps
- def select_topk_candidates(self, metrics, largest=True):
- """
- Args:
- metrics: (b, max_num_obj, h*w).
- topk_mask: (b, max_num_obj, topk) or None
- """
- # (b, max_num_obj, topk)
- topk_metrics, topk_idxs = torch.topk(metrics, self.topk_candidates, dim=-1, largest=largest)
- topk_mask = (topk_metrics.max(-1, keepdim=True)[0] > self.eps).expand_as(topk_idxs)
- # (b, max_num_obj, topk)
- topk_idxs.masked_fill_(~topk_mask, 0)
- # (b, max_num_obj, topk, h*w) -> (b, max_num_obj, h*w)
- count_tensor = torch.zeros(metrics.shape, dtype=torch.int8, device=topk_idxs.device)
- ones = torch.ones_like(topk_idxs[:, :, :1], dtype=torch.int8, device=topk_idxs.device)
- for k in range(self.topk_candidates):
- # Expand topk_idxs for each value of k and add 1 at the specified positions
- count_tensor.scatter_add_(-1, topk_idxs[:, :, k:k + 1], ones)
- # count_tensor.scatter_add_(-1, topk_idxs, torch.ones_like(topk_idxs, dtype=torch.int8, device=topk_idxs.device))
- # Filter invalid bboxes
- count_tensor.masked_fill_(count_tensor > 1, 0)
- return count_tensor.to(metrics.dtype)
- def get_targets(self, gt_labels, gt_bboxes, target_gt_idx, fg_mask):
- # Assigned target labels, (b, 1)
- batch_ind = torch.arange(end=self.bs, dtype=torch.int64, device=gt_labels.device)[..., None]
- target_gt_idx = target_gt_idx + batch_ind * self.n_max_boxes # (b, h*w)
- target_labels = gt_labels.long().flatten()[target_gt_idx] # (b, h*w)
- # Assigned target boxes, (b, max_num_obj, 4) -> (b, h*w, 4)
- target_bboxes = gt_bboxes.view(-1, 4)[target_gt_idx]
- # Assigned target scores
- target_labels.clamp_(0)
- # 10x faster than F.one_hot()
- target_scores = torch.zeros((target_labels.shape[0], target_labels.shape[1], self.num_classes),
- dtype=torch.int64,
- device=target_labels.device) # (b, h*w, 80)
- target_scores.scatter_(2, target_labels.unsqueeze(-1), 1)
- fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.num_classes) # (b, h*w, 80)
- target_scores = torch.where(fg_scores_mask > 0, target_scores, 0)
- return target_labels, target_bboxes, target_scores
-
- # -------------------------- Basic Functions --------------------------
- def select_candidates_in_gts(xy_centers, gt_bboxes, eps=1e-9):
- """select the positive anchors's center in gt
- Args:
- xy_centers (Tensor): shape(bs*n_max_boxes, num_total_anchors, 4)
- gt_bboxes (Tensor): shape(bs, n_max_boxes, 4)
- Return:
- (Tensor): shape(bs, n_max_boxes, num_total_anchors)
- """
- n_anchors = xy_centers.size(0)
- bs, n_max_boxes, _ = gt_bboxes.size()
- _gt_bboxes = gt_bboxes.reshape([-1, 4])
- xy_centers = xy_centers.unsqueeze(0).repeat(bs * n_max_boxes, 1, 1)
- gt_bboxes_lt = _gt_bboxes[:, 0:2].unsqueeze(1).repeat(1, n_anchors, 1)
- gt_bboxes_rb = _gt_bboxes[:, 2:4].unsqueeze(1).repeat(1, n_anchors, 1)
- b_lt = xy_centers - gt_bboxes_lt
- b_rb = gt_bboxes_rb - xy_centers
- bbox_deltas = torch.cat([b_lt, b_rb], dim=-1)
- bbox_deltas = bbox_deltas.reshape([bs, n_max_boxes, n_anchors, -1])
- return (bbox_deltas.min(axis=-1)[0] > eps).to(gt_bboxes.dtype)
- def select_highest_overlaps(mask_pos, overlaps, n_max_boxes):
- """if an anchor box is assigned to multiple gts,
- the one with the highest iou will be selected.
- Args:
- mask_pos (Tensor): shape(bs, n_max_boxes, num_total_anchors)
- overlaps (Tensor): shape(bs, n_max_boxes, num_total_anchors)
- Return:
- target_gt_idx (Tensor): shape(bs, num_total_anchors)
- fg_mask (Tensor): shape(bs, num_total_anchors)
- mask_pos (Tensor): shape(bs, n_max_boxes, num_total_anchors)
- """
- fg_mask = mask_pos.sum(-2)
- if fg_mask.max() > 1: # one anchor is assigned to multiple gt_bboxes
- mask_multi_gts = (fg_mask.unsqueeze(1) > 1).expand(-1, n_max_boxes, -1) # (b, n_max_boxes, h*w)
- max_overlaps_idx = overlaps.argmax(1) # (b, h*w)
- is_max_overlaps = torch.zeros(mask_pos.shape, dtype=mask_pos.dtype, device=mask_pos.device)
- is_max_overlaps.scatter_(1, max_overlaps_idx.unsqueeze(1), 1)
- mask_pos = torch.where(mask_multi_gts, is_max_overlaps, mask_pos).float() # (b, n_max_boxes, h*w)
- fg_mask = mask_pos.sum(-2)
- # Find each grid serve which gt(index)
- target_gt_idx = mask_pos.argmax(-2) # (b, h*w)
- return target_gt_idx, fg_mask, mask_pos
- def iou_calculator(box1, box2, eps=1e-9):
- """Calculate iou for batch
- Args:
- box1 (Tensor): shape(bs, n_max_boxes, 1, 4)
- box2 (Tensor): shape(bs, 1, num_total_anchors, 4)
- Return:
- (Tensor): shape(bs, n_max_boxes, num_total_anchors)
- """
- box1 = box1.unsqueeze(2) # [N, M1, 4] -> [N, M1, 1, 4]
- box2 = box2.unsqueeze(1) # [N, M2, 4] -> [N, 1, M2, 4]
- px1y1, px2y2 = box1[:, :, :, 0:2], box1[:, :, :, 2:4]
- gx1y1, gx2y2 = box2[:, :, :, 0:2], box2[:, :, :, 2:4]
- x1y1 = torch.maximum(px1y1, gx1y1)
- x2y2 = torch.minimum(px2y2, gx2y2)
- overlap = (x2y2 - x1y1).clip(0).prod(-1)
- area1 = (px2y2 - px1y1).clip(0).prod(-1)
- area2 = (gx2y2 - gx1y1).clip(0).prod(-1)
- union = area1 + area2 - overlap + eps
- return overlap / union
|