resnet.py 6.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190
  1. import torch
  2. import torch.nn as nn
  3. import torch.utils.model_zoo as model_zoo
  4. try:
  5. from .yolov3_basic import conv1x1, BasicBlock, Bottleneck
  6. except:
  7. from yolov3_basic import conv1x1, BasicBlock, Bottleneck
  8. __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
  9. 'resnet152']
  10. model_urls = {
  11. 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
  12. 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
  13. 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
  14. 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
  15. 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
  16. }
  17. # --------------------- ResNet -----------------------
  18. class ResNet(nn.Module):
  19. def __init__(self, block, layers, zero_init_residual=False):
  20. super(ResNet, self).__init__()
  21. self.inplanes = 64
  22. self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
  23. bias=False)
  24. self.bn1 = nn.BatchNorm2d(64)
  25. self.relu = nn.ReLU(inplace=True)
  26. self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
  27. self.layer1 = self._make_layer(block, 64, layers[0])
  28. self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
  29. self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
  30. self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
  31. for m in self.modules():
  32. if isinstance(m, nn.Conv2d):
  33. nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
  34. elif isinstance(m, nn.BatchNorm2d):
  35. nn.init.constant_(m.weight, 1)
  36. nn.init.constant_(m.bias, 0)
  37. # Zero-initialize the last BN in each residual branch,
  38. # so that the residual branch starts with zeros, and each residual block behaves like an identity.
  39. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
  40. if zero_init_residual:
  41. for m in self.modules():
  42. if isinstance(m, Bottleneck):
  43. nn.init.constant_(m.bn3.weight, 0)
  44. elif isinstance(m, BasicBlock):
  45. nn.init.constant_(m.bn2.weight, 0)
  46. def _make_layer(self, block, planes, blocks, stride=1):
  47. downsample = None
  48. if stride != 1 or self.inplanes != planes * block.expansion:
  49. downsample = nn.Sequential(
  50. conv1x1(self.inplanes, planes * block.expansion, stride),
  51. nn.BatchNorm2d(planes * block.expansion),
  52. )
  53. layers = []
  54. layers.append(block(self.inplanes, planes, stride, downsample))
  55. self.inplanes = planes * block.expansion
  56. for _ in range(1, blocks):
  57. layers.append(block(self.inplanes, planes))
  58. return nn.Sequential(*layers)
  59. def forward(self, x):
  60. """
  61. Input:
  62. x: (Tensor) -> [B, C, H, W]
  63. Output:
  64. c5: (Tensor) -> [B, C, H/32, W/32]
  65. """
  66. c1 = self.conv1(x) # [B, C, H/2, W/2]
  67. c1 = self.bn1(c1) # [B, C, H/2, W/2]
  68. c1 = self.relu(c1) # [B, C, H/2, W/2]
  69. c2 = self.maxpool(c1) # [B, C, H/4, W/4]
  70. c2 = self.layer1(c2) # [B, C, H/4, W/4]
  71. c3 = self.layer2(c2) # [B, C, H/8, W/8]
  72. c4 = self.layer3(c3) # [B, C, H/16, W/16]
  73. c5 = self.layer4(c4) # [B, C, H/32, W/32]
  74. output = [c3, c4, c5]
  75. return output
  76. # --------------------- Functions -----------------------
  77. def build_resnet(model_name="resnet18", pretrained=False):
  78. if model_name == 'resnet18':
  79. model = resnet18(pretrained)
  80. feat_dims = [128, 256, 512]
  81. elif model_name == 'resnet34':
  82. model = resnet34(pretrained)
  83. feat_dims = [128, 256, 512]
  84. elif model_name == 'resnet50':
  85. model = resnet50(pretrained)
  86. feat_dims = [512, 1024, 2048]
  87. elif model_name == 'resnet101':
  88. model = resnet34(pretrained)
  89. feat_dims = [512, 1024, 2048]
  90. else:
  91. raise NotImplementedError("Unknown resnet: {}".format(model_name))
  92. return model, feat_dims
  93. def resnet18(pretrained=False, **kwargs):
  94. """Constructs a ResNet-18 model.
  95. Args:
  96. pretrained (bool): If True, returns a model pre-trained on ImageNet
  97. """
  98. model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
  99. if pretrained:
  100. # strict = False as we don't need fc layer params.
  101. model.load_state_dict(model_zoo.load_url(model_urls['resnet18']), strict=False)
  102. return model
  103. def resnet34(pretrained=False, **kwargs):
  104. """Constructs a ResNet-34 model.
  105. Args:
  106. pretrained (bool): If True, returns a model pre-trained on ImageNet
  107. """
  108. model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
  109. if pretrained:
  110. model.load_state_dict(model_zoo.load_url(model_urls['resnet34']), strict=False)
  111. return model
  112. def resnet50(pretrained=False, **kwargs):
  113. """Constructs a ResNet-50 model.
  114. Args:
  115. pretrained (bool): If True, returns a model pre-trained on ImageNet
  116. """
  117. model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
  118. if pretrained:
  119. model.load_state_dict(model_zoo.load_url(model_urls['resnet50']), strict=False)
  120. return model
  121. def resnet101(pretrained=False, **kwargs):
  122. """Constructs a ResNet-101 model.
  123. Args:
  124. pretrained (bool): If True, returns a model pre-trained on ImageNet
  125. """
  126. model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
  127. if pretrained:
  128. model.load_state_dict(model_zoo.load_url(model_urls['resnet101']), strict=False)
  129. return model
  130. def resnet152(pretrained=False, **kwargs):
  131. """Constructs a ResNet-152 model.
  132. Args:
  133. pretrained (bool): If True, returns a model pre-trained on ImageNet
  134. """
  135. model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
  136. if pretrained:
  137. model.load_state_dict(model_zoo.load_url(model_urls['resnet152']), strict=False)
  138. return model
  139. if __name__=='__main__':
  140. import time
  141. from thop import profile
  142. # Build backbone
  143. model, _ = build_resnet(model_name='resnet18')
  144. # Inference
  145. x = torch.randn(1, 3, 640, 640)
  146. t0 = time.time()
  147. output = model(x)
  148. t1 = time.time()
  149. print('Time: ', t1 - t0)
  150. for out in output:
  151. print(out.shape)
  152. print('==============================')
  153. flops, params = profile(model, inputs=(x, ), verbose=False)
  154. print('==============================')
  155. print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
  156. print('Params : {:.2f} M'.format(params / 1e6))