| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102 |
- import torch
- import torch.nn as nn
- # -------------------- Detection Pred Layer --------------------
- ## Single-level pred layer
- class Yolov2DetPredLayer(nn.Module):
- def __init__(self, cfg, num_classes):
- super().__init__()
- # --------- Basic Parameters ----------
- self.stride = cfg.out_stride
- self.cls_dim = cfg.head_dim
- self.reg_dim = cfg.head_dim
- self.num_classes = cfg.num_classes
- # ------------------- Anchor box -------------------
- self.anchor_size = torch.as_tensor(cfg.anchor_sizes).float().view(-1, 2) # [A, 2]
- self.num_anchors = self.anchor_size.shape[0]
- # --------- Network Parameters ----------
- self.obj_pred = nn.Conv2d(self.cls_dim, 1 * self.num_anchors, kernel_size=1)
- self.cls_pred = nn.Conv2d(self.cls_dim, num_classes * self.num_anchors, kernel_size=1)
- self.reg_pred = nn.Conv2d(self.reg_dim, 4 * self.num_anchors, kernel_size=1)
- self.init_bias()
-
- def init_bias(self):
- # Init bias
- init_prob = 0.01
- bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
- # obj pred
- b = self.obj_pred.bias.view(1, -1)
- b.data.fill_(bias_value.item())
- self.obj_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
- # cls pred
- b = self.cls_pred.bias.view(1, -1)
- b.data.fill_(bias_value.item())
- self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
- # reg pred
- b = self.reg_pred.bias.view(-1, )
- b.data.fill_(1.0)
- self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
- def generate_anchors(self, fmp_size):
- """
- fmp_size: (List) [H, W]
- """
- # 特征图的宽和高
- fmp_h, fmp_w = fmp_size
- # 生成网格的x坐标和y坐标
- anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
- # 将xy两部分的坐标拼起来:[H, W, 2] -> [HW, 2]
- anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
- # [HW, 2] -> [HW, A, 2] -> [M, 2], M=HWA
- anchor_xy = anchor_xy.unsqueeze(1).repeat(1, self.num_anchors, 1)
- anchor_xy = anchor_xy.view(-1, 2)
- # [A, 2] -> [1, A, 2] -> [HW, A, 2] -> [M, 2], M=HWA
- anchor_wh = self.anchor_size.unsqueeze(0).repeat(fmp_h*fmp_w, 1, 1)
- anchor_wh = anchor_wh.view(-1, 2)
- anchors = torch.cat([anchor_xy, anchor_wh], dim=-1)
- return anchors
-
- def forward(self, cls_feat, reg_feat):
- # 预测层
- obj_pred = self.obj_pred(cls_feat)
- cls_pred = self.cls_pred(cls_feat)
- reg_pred = self.reg_pred(reg_feat)
- # 生成网格坐标
- B, _, H, W = cls_pred.size()
- fmp_size = [H, W]
- anchors = self.generate_anchors(fmp_size)
- anchors = anchors.to(cls_pred.device)
- # 对 pred 的size做一些view调整,便于后续的处理
- # [B, C*A, H, W] -> [B, H, W, C*A] -> [B, H*W*A, C]
- obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1)
- cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
- reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
-
- # 解算边界框坐标
- cxcy_pred = (torch.sigmoid(reg_pred[..., :2]) + anchors[..., :2]) * self.stride
- bwbh_pred = torch.exp(reg_pred[..., 2:]) * anchors[..., 2:]
- pred_x1y1 = cxcy_pred - bwbh_pred * 0.5
- pred_x2y2 = cxcy_pred + bwbh_pred * 0.5
- box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
- # output dict
- outputs = {"pred_obj": obj_pred, # (torch.Tensor) [B, M, 1]
- "pred_cls": cls_pred, # (torch.Tensor) [B, M, C]
- "pred_reg": reg_pred, # (torch.Tensor) [B, M, 4]
- "pred_box": box_pred, # (torch.Tensor) [B, M, 4]
- "anchors" : anchors, # (torch.Tensor) [M, 2]
- "fmp_size": fmp_size,
- "stride" : self.stride, # (Int)
- }
- return outputs
|