gelan_head.py 4.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
  1. import torch
  2. import torch.nn as nn
  3. try:
  4. from .modules import ConvModule
  5. except:
  6. from modules import ConvModule
  7. # Single-level Head
  8. class DetHead(nn.Module):
  9. def __init__(self,
  10. in_dim :int = 256,
  11. cls_head_dim :int = 256,
  12. reg_head_dim :int = 256,
  13. num_cls_head :int = 2,
  14. num_reg_head :int = 2,
  15. ):
  16. super().__init__()
  17. # --------- Basic Parameters ----------
  18. self.in_dim = in_dim
  19. self.num_cls_head = num_cls_head
  20. self.num_reg_head = num_reg_head
  21. # --------- Network Parameters ----------
  22. ## classification head
  23. cls_feats = []
  24. self.cls_head_dim = cls_head_dim
  25. for i in range(num_cls_head):
  26. if i == 0:
  27. cls_feats.append(ConvModule(in_dim, self.cls_head_dim, kernel_size=3, padding=1, stride=1))
  28. else:
  29. cls_feats.append(ConvModule(self.cls_head_dim, self.cls_head_dim, kernel_size=3, padding=1, stride=1))
  30. ## bbox regression head
  31. reg_feats = []
  32. self.reg_head_dim = reg_head_dim
  33. for i in range(num_reg_head):
  34. if i == 0:
  35. reg_feats.append(ConvModule(in_dim, self.reg_head_dim, kernel_size=3, padding=1, stride=1))
  36. else:
  37. reg_feats.append(ConvModule(self.reg_head_dim, self.reg_head_dim, kernel_size=3, padding=1, stride=1, groups=4))
  38. self.cls_feats = nn.Sequential(*cls_feats)
  39. self.reg_feats = nn.Sequential(*reg_feats)
  40. self.init_weights()
  41. def init_weights(self):
  42. """Initialize the parameters."""
  43. for m in self.modules():
  44. if isinstance(m, torch.nn.Conv2d):
  45. m.reset_parameters()
  46. def forward(self, x):
  47. """
  48. in_feats: (Tensor) [B, C, H, W]
  49. """
  50. cls_feats = self.cls_feats(x)
  51. reg_feats = self.reg_feats(x)
  52. return cls_feats, reg_feats
  53. # Multi-level Head
  54. class GElanDetHead(nn.Module):
  55. def __init__(self, cfg, in_dims):
  56. super().__init__()
  57. self.num_levels = len(cfg.out_stride)
  58. ## ----------- Network Parameters -----------
  59. self.multi_level_heads = nn.ModuleList(
  60. [DetHead(in_dim = in_dims[level],
  61. cls_head_dim = max(in_dims[0], min(cfg.num_classes * 2, 128)),
  62. reg_head_dim = max(in_dims[0]//4, 16, 4*cfg.reg_max),
  63. num_cls_head = cfg.num_cls_head,
  64. num_reg_head = cfg.num_reg_head,
  65. ) for level in range(self.num_levels)])
  66. # --------- Basic Parameters ----------
  67. self.in_dims = in_dims
  68. self.cls_head_dim = self.multi_level_heads[0].cls_head_dim
  69. self.reg_head_dim = self.multi_level_heads[0].reg_head_dim
  70. def forward(self, feats):
  71. """
  72. feats: List[(Tensor)] [[B, C, H, W], ...]
  73. """
  74. cls_feats = []
  75. reg_feats = []
  76. for feat, head in zip(feats, self.multi_level_heads):
  77. # ---------------- Pred ----------------
  78. cls_feat, reg_feat = head(feat)
  79. cls_feats.append(cls_feat)
  80. reg_feats.append(reg_feat)
  81. return cls_feats, reg_feats
  82. if __name__=='__main__':
  83. import time
  84. from thop import profile
  85. # Model config
  86. # GElan-Base config
  87. class GElanBaseConfig(object):
  88. def __init__(self) -> None:
  89. # ---------------- Model config ----------------
  90. self.reg_max = 16
  91. self.out_stride = [8, 16, 32]
  92. self.max_stride = 32
  93. ## Head
  94. self.num_cls_head = 2
  95. self.num_reg_head = 2
  96. cfg = GElanBaseConfig()
  97. cfg.num_classes = 20
  98. # Build a head
  99. fpn_dims = [128, 256, 256]
  100. pyramid_feats = [torch.randn(1, fpn_dims[0], 80, 80),
  101. torch.randn(1, fpn_dims[1], 40, 40),
  102. torch.randn(1, fpn_dims[2], 20, 20)]
  103. head = GElanDetHead(cfg, fpn_dims)
  104. # Inference
  105. t0 = time.time()
  106. cls_feats, reg_feats = head(pyramid_feats)
  107. t1 = time.time()
  108. print('Time: ', t1 - t0)
  109. print("====== GElan Head output ======")
  110. for level, (cls_f, reg_f) in enumerate(zip(cls_feats, reg_feats)):
  111. print("- Level-{} : ".format(level), cls_f.shape, reg_f.shape)
  112. flops, params = profile(head, inputs=(pyramid_feats, ), verbose=False)
  113. print('==============================')
  114. print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
  115. print('Params : {:.2f} M'.format(params / 1e6))