yolov7_neck.py 3.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108
  1. import torch
  2. import torch.nn as nn
  3. try:
  4. from .modules import ConvModule
  5. except:
  6. from modules import ConvModule
  7. # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv7-AF by Glenn Jocher
  8. class SPPF(nn.Module):
  9. """
  10. This code referenced to https://github.com/ultralytics/yolov7-AF
  11. """
  12. def __init__(self, in_dim, out_dim, expansion=0.5):
  13. super().__init__()
  14. ## ----------- Basic Parameters -----------
  15. inter_dim = int(in_dim * expansion)
  16. self.out_dim = out_dim
  17. ## ----------- Network Parameters -----------
  18. self.cv1 = ConvModule(in_dim, inter_dim, kernel_size=1)
  19. self.cv2 = ConvModule(inter_dim * 4, out_dim, kernel_size=1,)
  20. self.m = nn.MaxPool2d(kernel_size=5, stride=1, padding=2)
  21. # Initialize all layers
  22. self.init_weights()
  23. def init_weights(self):
  24. """Initialize the parameters."""
  25. for m in self.modules():
  26. if isinstance(m, torch.nn.Conv2d):
  27. m.reset_parameters()
  28. def forward(self, x):
  29. x = self.cv1(x)
  30. y1 = self.m(x)
  31. y2 = self.m(y1)
  32. return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
  33. # SPPF block with CSP module
  34. class SPPFBlockCSP(nn.Module):
  35. """
  36. CSP Spatial Pyramid Pooling Block
  37. """
  38. def __init__(self, in_dim, out_dim):
  39. super(SPPFBlockCSP, self).__init__()
  40. inter_dim = in_dim // 2
  41. self.out_dim = out_dim
  42. self.cv1 = ConvModule(in_dim, inter_dim, kernel_size=1)
  43. self.cv2 = ConvModule(in_dim, inter_dim, kernel_size=1)
  44. self.module = nn.Sequential(
  45. ConvModule(inter_dim, inter_dim, kernel_size=3, padding=1),
  46. SPPF(inter_dim, inter_dim, expansion=1.0),
  47. ConvModule(inter_dim, inter_dim, kernel_size=3, padding=1),
  48. )
  49. self.cv3 = ConvModule(inter_dim * 2, self.out_dim, kernel_size=1)
  50. # Initialize all layers
  51. self.init_weights()
  52. def init_weights(self):
  53. """Initialize the parameters."""
  54. for m in self.modules():
  55. if isinstance(m, torch.nn.Conv2d):
  56. m.reset_parameters()
  57. def forward(self, x):
  58. x1 = self.cv1(x)
  59. x2 = self.module(self.cv2(x))
  60. y = self.cv3(torch.cat([x1, x2], dim=1))
  61. return y
  62. if __name__=='__main__':
  63. import time
  64. from thop import profile
  65. # Model config
  66. # YOLOv7-AF-Base config
  67. class Yolov7AFBaseConfig(object):
  68. def __init__(self) -> None:
  69. # ---------------- Model config ----------------
  70. self.out_stride = 32
  71. self.max_stride = 32
  72. ## Neck
  73. self.neck_expand_ratio = 0.5
  74. self.spp_pooling_size = 5
  75. cfg = Yolov7AFBaseConfig()
  76. # Build a head
  77. in_dim = 512
  78. out_dim = 512
  79. neck = SPPF(in_dim, out_dim)
  80. # Inference
  81. x = torch.randn(1, in_dim, 20, 20)
  82. t0 = time.time()
  83. output = neck(x)
  84. t1 = time.time()
  85. print('Time: ', t1 - t0)
  86. print('Neck output: ', output.shape)
  87. flops, params = profile(neck, inputs=(x, ), verbose=False)
  88. print('==============================')
  89. print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
  90. print('Params : {:.2f} M'.format(params / 1e6))