| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317 |
- import random
- import cv2
- import math
- import numpy as np
- import torch
- import torchvision.transforms.functional as F
- # ------------------------- Basic augmentations -------------------------
- ## Spatial transform
- def random_perspective(image,
- targets=(),
- degrees=10,
- translate=.1,
- scale=[0.1, 2.0],
- shear=10,
- perspective=0.0,
- border=(0, 0)):
- # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10))
- # targets = [cls, xyxy]
- height = image.shape[0] + border[0] * 2 # shape(h,w,c)
- width = image.shape[1] + border[1] * 2
- # Center
- C = np.eye(3)
- C[0, 2] = -image.shape[1] / 2 # x translation (pixels)
- C[1, 2] = -image.shape[0] / 2 # y translation (pixels)
- # Perspective
- P = np.eye(3)
- P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
- P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
- # Rotation and Scale
- R = np.eye(3)
- a = random.uniform(-degrees, degrees)
- # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
- s = random.uniform(scale[0], scale[1])
- # s = 2 ** random.uniform(-scale, scale)
- R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
- # Shear
- S = np.eye(3)
- S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
- S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
- # Translation
- T = np.eye(3)
- T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
- T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
- # Combined rotation matrix
- M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
- if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
- if perspective:
- image = cv2.warpPerspective(image, M, dsize=(width, height), borderValue=(114, 114, 114))
- else: # affine
- image = cv2.warpAffine(image, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
- # Transform label coordinates
- n = len(targets)
- if n:
- new = np.zeros((n, 4))
- # warp boxes
- xy = np.ones((n * 4, 3))
- xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
- xy = xy @ M.T # transform
- xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
- # create new boxes
- x = xy[:, [0, 2, 4, 6]]
- y = xy[:, [1, 3, 5, 7]]
- new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
- # clip
- new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
- new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
- targets[:, 1:5] = new
- return image, targets
- ## Color transform
- def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
- r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
- hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
- dtype = img.dtype # uint8
- x = np.arange(0, 256, dtype=np.int16)
- lut_hue = ((x * r[0]) % 180).astype(dtype)
- lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
- lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
- img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
- cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
- return img
- # ------------------------- Preprocessers -------------------------
- ## YOLO-style Transform for Train
- class YOLOAugmentation(object):
- def __init__(self,
- img_size=640,
- affine_params=None,
- pixel_mean = [0., 0., 0.],
- pixel_std = [255., 255., 255.],
- box_format='xyxy',
- normalize_coords=False):
- # Basic parameters
- self.img_size = img_size
- self.pixel_mean = pixel_mean
- self.pixel_std = pixel_std
- self.box_format = box_format
- self.affine_params = affine_params
- self.normalize_coords = normalize_coords
- self.color_format = 'bgr'
- def __call__(self, image, target, mosaic=False):
- # --------------- Resize image ---------------
- orig_h, orig_w = image.shape[:2]
- ratio = self.img_size / max(orig_h, orig_w)
- if ratio != 1:
- new_shape = (int(round(orig_w * ratio)), int(round(orig_h * ratio)))
- image = cv2.resize(image, new_shape)
- img_h, img_w = image.shape[:2]
- # rescale bbox
- target["boxes"][..., [0, 2]] = target["boxes"][..., [0, 2]] / orig_w * img_w
- target["boxes"][..., [1, 3]] = target["boxes"][..., [1, 3]] / orig_h * img_h
- # --------------- HSV augmentations ---------------
- image = augment_hsv(image,
- hgain=self.affine_params['hsv_h'],
- sgain=self.affine_params['hsv_s'],
- vgain=self.affine_params['hsv_v'])
-
- # --------------- Spatial augmentations ---------------
- ## Random perspective
- if not mosaic:
- # spatial augment
- target_ = np.concatenate((target['labels'][..., None], target['boxes']), axis=-1)
- image, target_ = random_perspective(image, target_,
- degrees = self.affine_params['degrees'],
- translate = self.affine_params['translate'],
- scale = self.affine_params['scale'],
- shear = self.affine_params['shear'],
- perspective = self.affine_params['perspective']
- )
- target['boxes'] = target_[..., 1:]
- target['labels'] = target_[..., 0]
- ## Random flip
- if random.random() < 0.5:
- w = image.shape[1]
- image = np.fliplr(image).copy()
- boxes = target['boxes'].copy()
- boxes[..., [0, 2]] = w - boxes[..., [2, 0]]
- target["boxes"] = boxes
- # --------------- To torch.Tensor ---------------
- image = F.to_tensor(image) * 255.
- if target is not None:
- target["boxes"] = torch.as_tensor(target["boxes"]).float()
- target["labels"] = torch.as_tensor(target["labels"]).long()
- # normalize coords
- if self.normalize_coords:
- target["boxes"][..., [0, 2]] /= img_w
- target["boxes"][..., [1, 3]] /= img_h
- # xyxy -> xywh
- if self.box_format == "xywh":
- box_cxcy = (target["boxes"][..., :2] + target["boxes"][..., 2:]) * 0.5
- box_bwbh = target["boxes"][..., 2:] - target["boxes"][..., :2]
- target["boxes"] = torch.cat([box_cxcy, box_bwbh], dim=-1)
- # --------------- Pad Image ---------------
- img_h0, img_w0 = image.shape[1:]
- pad_image = torch.ones([image.size(0), self.img_size, self.img_size]).float() * 114.
- pad_image[:, :img_h0, :img_w0] = image
- # --------------- Normalize ---------------
- pad_image = F.normalize(pad_image, self.pixel_mean, self.pixel_std)
- return pad_image, target, ratio
- ## YOLO-style Transform for Eval
- class YOLOBaseTransform(object):
- def __init__(self,
- img_size=640,
- max_stride=32,
- pixel_mean = [0., 0., 0.],
- pixel_std = [255., 255., 255.],
- box_format='xyxy',
- normalize_coords=False):
- self.img_size = img_size
- self.max_stride = max_stride
- self.pixel_mean = pixel_mean
- self.pixel_std = pixel_std
- self.box_format = box_format
- self.normalize_coords = normalize_coords
- self.color_format = 'bgr'
- def __call__(self, image, target=None, mosaic=False):
- # --------------- Resize image ---------------
- orig_h, orig_w = image.shape[:2]
- ratio = self.img_size / max(orig_h, orig_w)
- if ratio != 1:
- new_shape = (int(round(orig_w * ratio)), int(round(orig_h * ratio)))
- image = cv2.resize(image, new_shape)
- img_h, img_w = image.shape[:2]
- # --------------- Rescale bboxes ---------------
- if target is not None:
- # rescale bbox
- target["boxes"][..., [0, 2]] = target["boxes"][..., [0, 2]] / orig_w * img_w
- target["boxes"][..., [1, 3]] = target["boxes"][..., [1, 3]] / orig_h * img_h
- # --------------- To torch.Tensor ---------------
- image = F.to_tensor(image) * 255.
- if target is not None:
- target["boxes"] = torch.as_tensor(target["boxes"]).float()
- target["labels"] = torch.as_tensor(target["labels"]).long()
- # normalize coords
- if self.normalize_coords:
- target["boxes"][..., [0, 2]] /= img_w
- target["boxes"][..., [1, 3]] /= img_h
-
- # xyxy -> xywh
- if self.box_format == "xywh":
- box_cxcy = (target["boxes"][..., :2] + target["boxes"][..., 2:]) * 0.5
- box_bwbh = target["boxes"][..., 2:] - target["boxes"][..., :2]
- target["boxes"] = torch.cat([box_cxcy, box_bwbh], dim=-1)
- # --------------- Pad image ---------------
- img_h0, img_w0 = image.shape[1:]
- dh = img_h0 % self.max_stride
- dw = img_w0 % self.max_stride
- dh = dh if dh == 0 else self.max_stride - dh
- dw = dw if dw == 0 else self.max_stride - dw
-
- pad_img_h = img_h0 + dh
- pad_img_w = img_w0 + dw
- pad_image = torch.ones([image.size(0), pad_img_h, pad_img_w]).float() * 114.
- pad_image[:, :img_h0, :img_w0] = image
- # --------------- Normalize ---------------
- pad_image = F.normalize(pad_image, self.pixel_mean, self.pixel_std)
- return pad_image, target, ratio
- if __name__ == "__main__":
- image_path = "voc_image.jpg"
- is_train = False
- affine_params = {
- 'degrees': 0.0,
- 'translate': 0.2,
- 'scale': [0.1, 2.0],
- 'shear': 0.0,
- 'perspective': 0.0,
- 'hsv_h': 0.015,
- 'hsv_s': 0.7,
- 'hsv_v': 0.4,
- }
- if is_train:
- ssd_augment = YOLOAugmentation(img_size=416,
- affine_params=affine_params,
- pixel_mean=[0., 0., 0.],
- pixel_std=[255., 255., 255.],
- box_format="xyxy",
- normalize_coords=False,
- )
- else:
- ssd_augment = YOLOBaseTransform(img_size=416,
- max_stride=32,
- pixel_mean=[0., 0., 0.],
- pixel_std=[255., 255., 255.],
- box_format="xyxy",
- normalize_coords=False,
- )
-
- # 读取图像数据
- orig_image = cv2.imread(image_path)
- target = {
- "boxes": np.array([[86, 96, 256, 425], [132, 71, 243, 282]], dtype=np.float32),
- "labels": np.array([12, 14], dtype=np.int32),
- }
- # 绘制原始数据的边界框
- image_copy = orig_image.copy()
- for box in target["boxes"]:
- x1, y1, x2, y2 = box
- image_copy = cv2.rectangle(image_copy, (int(x1), int(y1)), (int(x2), int(y2)), [0, 0, 255], 2)
- cv2.imshow("original image", image_copy)
- cv2.waitKey(0)
- # 展示预处理后的输入图像数据和标签信息
- image_aug, target_aug, _ = ssd_augment(orig_image, target)
- # [c, h, w] -> [h, w, c]
- image_aug = image_aug.permute(1, 2, 0).contiguous().numpy()
- image_aug = np.clip(image_aug * 255, 0, 255).astype(np.uint8)
- image_aug = image_aug.copy()
- # 绘制处理后的边界框
- for box in target_aug["boxes"]:
- x1, y1, x2, y2 = box
- image_aug = cv2.rectangle(image_aug, (int(x1), int(y1)), (int(x2), int(y2)), [0, 0, 255], 2)
- cv2.imshow("processed image", image_aug)
- cv2.waitKey(0)
|