| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210 |
- import math
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- # -------------------- Detection Pred Layer --------------------
- ## Single-level pred layer
- class DetPredLayer(nn.Module):
- def __init__(self,
- cls_dim :int = 256,
- reg_dim :int = 256,
- stride :int = 32,
- reg_max :int = 16,
- num_classes :int = 80,
- num_coords :int = 4):
- super().__init__()
- # --------- Basic Parameters ----------
- self.stride = stride
- self.cls_dim = cls_dim
- self.reg_dim = reg_dim
- self.reg_max = reg_max
- self.num_classes = num_classes
- self.num_coords = num_coords
- # --------- Network Parameters ----------
- self.cls_pred = nn.Conv2d(cls_dim, num_classes, kernel_size=1)
- self.reg_pred = nn.Conv2d(reg_dim, num_coords, kernel_size=1)
- self.init_bias()
-
- def init_bias(self):
- # cls pred bias
- b = self.cls_pred.bias.view(1, -1)
- b.data.fill_(math.log(5 / self.num_classes / (640. / self.stride) ** 2))
- self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
- # reg pred bias
- b = self.reg_pred.bias.view(-1, )
- b.data.fill_(1.0)
- self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
- w = self.reg_pred.weight
- w.data.fill_(0.)
- self.reg_pred.weight = torch.nn.Parameter(w, requires_grad=True)
- def generate_anchors(self, fmp_size):
- """
- fmp_size: (List) [H, W]
- """
- # generate grid cells
- fmp_h, fmp_w = fmp_size
- anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
- # [H, W, 2] -> [HW, 2]
- anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
- anchors += 0.5 # add center offset
- anchors *= self.stride
- return anchors
-
- def forward(self, cls_feat, reg_feat):
- # pred
- cls_pred = self.cls_pred(cls_feat)
- reg_pred = self.reg_pred(reg_feat)
- # generate anchor boxes: [M, 4]
- B, _, H, W = cls_pred.size()
- fmp_size = [H, W]
- anchors = self.generate_anchors(fmp_size)
- anchors = anchors.to(cls_pred.device)
- # stride tensor: [M, 1]
- stride_tensor = torch.ones_like(anchors[..., :1]) * self.stride
-
- # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
- cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
- reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4*self.reg_max)
-
- # output dict
- outputs = {"pred_cls": cls_pred, # List(Tensor) [B, M, C]
- "pred_reg": reg_pred, # List(Tensor) [B, M, 4*(reg_max)]
- "anchors": anchors, # List(Tensor) [M, 2]
- "strides": self.stride, # List(Int) = [8, 16, 32]
- "stride_tensor": stride_tensor # List(Tensor) [M, 1]
- }
- return outputs
- ## Multi-level pred layer
- class Yolov8DetPredLayer(nn.Module):
- def __init__(self,
- cfg,
- cls_dim,
- reg_dim,
- ):
- super().__init__()
- # --------- Basic Parameters ----------
- self.cfg = cfg
- self.cls_dim = cls_dim
- self.reg_dim = reg_dim
- # ----------- Network Parameters -----------
- ## pred layers
- self.multi_level_preds = nn.ModuleList(
- [DetPredLayer(cls_dim = cls_dim,
- reg_dim = reg_dim,
- stride = cfg.out_stride[level],
- reg_max = cfg.reg_max,
- num_classes = cfg.num_classes,
- num_coords = 4 * cfg.reg_max)
- for level in range(cfg.num_levels)
- ])
- ## proj conv
- proj_init = torch.arange(cfg.reg_max, dtype=torch.float)
- self.proj_conv = nn.Conv2d(cfg.reg_max, 1, kernel_size=1, bias=False).requires_grad_(False)
- self.proj_conv.weight.data[:] = nn.Parameter(proj_init.view([1, cfg.reg_max, 1, 1]), requires_grad=False)
- def forward(self, cls_feats, reg_feats):
- all_anchors = []
- all_strides = []
- all_cls_preds = []
- all_reg_preds = []
- all_box_preds = []
- for level in range(self.cfg.num_levels):
- # -------------- Single-level prediction --------------
- outputs = self.multi_level_preds[level](cls_feats[level], reg_feats[level])
- # -------------- Decode bbox --------------
- B, M = outputs["pred_reg"].shape[:2]
- # [B, M, 4*(reg_max)] -> [B, M, 4, reg_max]
- delta_pred = outputs["pred_reg"].reshape([B, M, 4, self.cfg.reg_max])
- # [B, M, 4, reg_max] -> [B, reg_max, 4, M]
- delta_pred = delta_pred.permute(0, 3, 2, 1).contiguous()
- # [B, reg_max, 4, M] -> [B, 1, 4, M]
- delta_pred = self.proj_conv(F.softmax(delta_pred, dim=1))
- # [B, 1, 4, M] -> [B, 4, M] -> [B, M, 4]
- delta_pred = delta_pred.view(B, 4, M).permute(0, 2, 1).contiguous()
- ## tlbr -> xyxy
- x1y1_pred = outputs["anchors"][None] - delta_pred[..., :2] * self.cfg.out_stride[level]
- x2y2_pred = outputs["anchors"][None] + delta_pred[..., 2:] * self.cfg.out_stride[level]
- box_pred = torch.cat([x1y1_pred, x2y2_pred], dim=-1)
- # collect results
- all_cls_preds.append(outputs["pred_cls"])
- all_reg_preds.append(outputs["pred_reg"])
- all_box_preds.append(box_pred)
- all_anchors.append(outputs["anchors"])
- all_strides.append(outputs["stride_tensor"])
-
- # output dict
- outputs = {"pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
- "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4*(reg_max)]
- "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
- "anchors": all_anchors, # List(Tensor) [M, 2]
- "stride_tensor": all_strides, # List(Tensor) [M, 1]
- "strides": self.cfg.out_stride, # List(Int) = [8, 16, 32]
- }
- return outputs
- if __name__=='__main__':
- import time
- from thop import profile
- # Model config
-
- # YOLOv8-Base config
- class Yolov8BaseConfig(object):
- def __init__(self) -> None:
- # ---------------- Model config ----------------
- self.width = 1.0
- self.depth = 1.0
- self.ratio = 1.0
- self.reg_max = 16
- self.out_stride = [8, 16, 32]
- self.max_stride = 32
- self.num_levels = 3
- ## Head
- cfg = Yolov8BaseConfig()
- cfg.num_classes = 20
- cls_dim = 128
- reg_dim = 64
- # Build a pred layer
- pred = Yolov8DetPredLayer(cfg, cls_dim, reg_dim)
- # Inference
- cls_feats = [torch.randn(1, cls_dim, 80, 80),
- torch.randn(1, cls_dim, 40, 40),
- torch.randn(1, cls_dim, 20, 20),]
- reg_feats = [torch.randn(1, reg_dim, 80, 80),
- torch.randn(1, reg_dim, 40, 40),
- torch.randn(1, reg_dim, 20, 20),]
- t0 = time.time()
- output = pred(cls_feats, reg_feats)
- t1 = time.time()
- print('Time: ', t1 - t0)
- print('====== Pred output ======= ')
- pred_cls = output["pred_cls"]
- pred_reg = output["pred_reg"]
- pred_box = output["pred_box"]
- anchors = output["anchors"]
-
- for level in range(cfg.num_levels):
- print("- Level-{} : classification -> {}".format(level, pred_cls[level].shape))
- print("- Level-{} : delta regression -> {}".format(level, pred_reg[level].shape))
- print("- Level-{} : bbox regression -> {}".format(level, pred_box[level].shape))
- print("- Level-{} : anchor boxes -> {}".format(level, anchors[level].shape))
- flops, params = profile(pred, inputs=(cls_feats, reg_feats, ), verbose=False)
- print('==============================')
- print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
- print('Params : {:.2f} M'.format(params / 1e6))
|