| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179 |
- import torch
- import torch.nn as nn
- try:
- from .yolov8_basic import BasicConv
- except:
- from yolov8_basic import BasicConv
- # -------------------- Detection Head --------------------
- ## Single-level Detection Head
- class DetHead(nn.Module):
- def __init__(self,
- in_dim :int = 256,
- cls_head_dim :int = 256,
- reg_head_dim :int = 256,
- num_cls_head :int = 2,
- num_reg_head :int = 2,
- act_type :str = "silu",
- norm_type :str = "BN",
- depthwise :bool = False):
- super().__init__()
- # --------- Basic Parameters ----------
- self.in_dim = in_dim
- self.num_cls_head = num_cls_head
- self.num_reg_head = num_reg_head
- self.act_type = act_type
- self.norm_type = norm_type
- self.depthwise = depthwise
-
- # --------- Network Parameters ----------
- ## cls head
- cls_feats = []
- self.cls_head_dim = cls_head_dim
- for i in range(num_cls_head):
- if i == 0:
- cls_feats.append(
- BasicConv(in_dim, self.cls_head_dim,
- kernel_size=3, padding=1, stride=1,
- act_type=act_type,
- norm_type=norm_type,
- depthwise=depthwise)
- )
- else:
- cls_feats.append(
- BasicConv(self.cls_head_dim, self.cls_head_dim,
- kernel_size=3, padding=1, stride=1,
- act_type=act_type,
- norm_type=norm_type,
- depthwise=depthwise)
- )
- ## reg head
- reg_feats = []
- self.reg_head_dim = reg_head_dim
- for i in range(num_reg_head):
- if i == 0:
- reg_feats.append(
- BasicConv(in_dim, self.reg_head_dim,
- kernel_size=3, padding=1, stride=1,
- act_type=act_type,
- norm_type=norm_type,
- depthwise=depthwise)
- )
- else:
- reg_feats.append(
- BasicConv(self.reg_head_dim, self.reg_head_dim,
- kernel_size=3, padding=1, stride=1,
- act_type=act_type,
- norm_type=norm_type,
- depthwise=depthwise)
- )
- self.cls_feats = nn.Sequential(*cls_feats)
- self.reg_feats = nn.Sequential(*reg_feats)
- self.init_weights()
-
- def init_weights(self):
- """Initialize the parameters."""
- for m in self.modules():
- if isinstance(m, torch.nn.Conv2d):
- # In order to be consistent with the source code,
- # reset the Conv2d initialization parameters
- m.reset_parameters()
- def forward(self, x):
- """
- in_feats: (Tensor) [B, C, H, W]
- """
- cls_feats = self.cls_feats(x)
- reg_feats = self.reg_feats(x)
- return cls_feats, reg_feats
-
- ## Multi-level Detection Head
- class Yolov8DetHead(nn.Module):
- def __init__(self, cfg, in_dims):
- super().__init__()
- ## ----------- Network Parameters -----------
- self.multi_level_heads = nn.ModuleList(
- [DetHead(in_dim = in_dims[level],
- cls_head_dim = max(in_dims[0], min(cfg.num_classes, 128)),
- reg_head_dim = max(in_dims[0]//4, 16, 4*cfg.reg_max),
- num_cls_head = cfg.num_cls_head,
- num_reg_head = cfg.num_reg_head,
- act_type = cfg.head_act,
- norm_type = cfg.head_norm,
- depthwise = cfg.head_depthwise)
- for level in range(cfg.num_levels)
- ])
- # --------- Basic Parameters ----------
- self.in_dims = in_dims
- self.cls_head_dim = self.multi_level_heads[0].cls_head_dim
- self.reg_head_dim = self.multi_level_heads[0].reg_head_dim
- def forward(self, feats):
- """
- feats: List[(Tensor)] [[B, C, H, W], ...]
- """
- cls_feats = []
- reg_feats = []
- for feat, head in zip(feats, self.multi_level_heads):
- # ---------------- Pred ----------------
- cls_feat, reg_feat = head(feat)
- cls_feats.append(cls_feat)
- reg_feats.append(reg_feat)
- return cls_feats, reg_feats
- if __name__=='__main__':
- import time
- from thop import profile
- # Model config
-
- # YOLOv8-Base config
- class Yolov8BaseConfig(object):
- def __init__(self) -> None:
- # ---------------- Model config ----------------
- self.width = 0.50
- self.depth = 0.34
- self.ratio = 2.0
- self.reg_max = 16
- self.out_stride = [8, 16, 32]
- self.max_stride = 32
- self.num_levels = 3
- ## Head
- self.head_act = 'lrelu'
- self.head_norm = 'BN'
- self.head_depthwise = False
- self.num_cls_head = 2
- self.num_reg_head = 2
- cfg = Yolov8BaseConfig()
- cfg.num_classes = 20
- # Build a head
- fpn_dims = [128, 256, 512]
- pyramid_feats = [torch.randn(1, fpn_dims[0], 80, 80),
- torch.randn(1, fpn_dims[1], 40, 40),
- torch.randn(1, fpn_dims[2], 20, 20)]
- head = Yolov8DetHead(cfg, fpn_dims)
- # Inference
- t0 = time.time()
- cls_feats, reg_feats = head(pyramid_feats)
- t1 = time.time()
- print('Time: ', t1 - t0)
- print("====== Yolov8 Head output ======")
- for level, (cls_f, reg_f) in enumerate(zip(cls_feats, reg_feats)):
- print("- Level-{} : ".format(level), cls_f.shape, reg_f.shape)
- flops, params = profile(head, inputs=(pyramid_feats, ), verbose=False)
- print('==============================')
- print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
- print('Params : {:.2f} M'.format(params / 1e6))
-
|