| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233 |
- import numpy as np
- import torch
- import torch.nn as nn
- # --------------------- Basic modules ---------------------
- def get_conv2d(c1, c2, k, p, s, d, g, bias=False):
- conv = nn.Conv2d(c1, c2, k, stride=s, padding=p, dilation=d, groups=g, bias=bias)
- return conv
- def get_activation(act_type=None):
- if act_type == 'relu':
- return nn.ReLU(inplace=True)
- elif act_type == 'lrelu':
- return nn.LeakyReLU(0.1, inplace=True)
- elif act_type == 'mish':
- return nn.Mish(inplace=True)
- elif act_type == 'silu':
- return nn.SiLU(inplace=True)
- elif act_type is None:
- return nn.Identity()
- else:
- raise NotImplementedError
- def get_norm(norm_type, dim):
- if norm_type == 'BN':
- return nn.BatchNorm2d(dim)
- elif norm_type == 'GN':
- return nn.GroupNorm(num_groups=32, num_channels=dim)
- elif norm_type is None:
- return nn.Identity()
- else:
- raise NotImplementedError
- class BasicConv(nn.Module):
- def __init__(self,
- in_dim, # in channels
- out_dim, # out channels
- kernel_size=1, # kernel size
- padding=0, # padding
- stride=1, # padding
- dilation=1, # dilation
- act_type :str = 'lrelu', # activation
- norm_type :str = 'BN', # normalization
- depthwise :bool = False
- ):
- super(BasicConv, self).__init__()
- self.depthwise = depthwise
- if not depthwise:
- self.conv = get_conv2d(in_dim, out_dim, k=kernel_size, p=padding, s=stride, d=dilation, g=1, bias=True)
- self.norm = get_norm(norm_type, out_dim)
- else:
- self.conv1 = get_conv2d(in_dim, in_dim, k=kernel_size, p=padding, s=stride, d=dilation, g=in_dim, bias=True)
- self.norm1 = get_norm(norm_type, in_dim)
- self.conv2 = get_conv2d(in_dim, out_dim, k=1, p=0, s=1, d=1, g=1, bias=True)
- self.norm2 = get_norm(norm_type, out_dim)
- self.act = get_activation(act_type)
- def forward(self, x):
- if not self.depthwise:
- return self.act(self.norm(self.conv(x)))
- else:
- # Depthwise conv
- x = self.norm1(self.conv1(x))
- # Pointwise conv
- x = self.act(self.norm2(self.conv2(x)))
- return x
- class RepVGGBlock(nn.Module):
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size=3,
- stride=1,
- padding=1,
- dilation=1,
- groups=1,
- deploy=False,
- ):
- super(RepVGGBlock, self).__init__()
- assert kernel_size == 3
- assert padding == 1
- # --------- Basic parameters ---------
- self.deploy = deploy
- self.groups = groups
- self.in_channels = in_channels
- self.out_channels = out_channels
- padding_11 = padding - kernel_size // 2
- # --------- Model parameters ---------
- if deploy:
- self.rbr_reparam = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride,
- padding=padding, dilation=dilation, groups=groups, bias=True)
- else:
- self.rbr_identity = nn.BatchNorm2d(num_features=in_channels) if out_channels == in_channels and stride == 1 else None
- self.rbr_dense = BasicConv(in_channels, out_channels, kernel_size=kernel_size, padding=padding, stride=stride, act_type=None)
- self.rbr_1x1 = BasicConv(in_channels, out_channels, kernel_size=1, padding=padding_11, stride=stride, act_type=None)
- self.nonlinearity = nn.ReLU()
- def forward(self, inputs):
- '''Forward process'''
- if hasattr(self, 'rbr_reparam'):
- return self.nonlinearity(self.rbr_reparam(inputs))
- if self.rbr_identity is None:
- id_out = 0
- else:
- id_out = self.rbr_identity(inputs)
- return self.nonlinearity(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out)
- def get_equivalent_kernel_bias(self):
- kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
- kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
- kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
- return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
- def _avg_to_3x3_tensor(self, avgp):
- channels = self.in_channels
- groups = self.groups
- kernel_size = avgp.kernel_size
- input_dim = channels // groups
- k = torch.zeros((channels, input_dim, kernel_size, kernel_size))
- k[np.arange(channels), np.tile(np.arange(input_dim), groups), :, :] = 1.0 / kernel_size ** 2
- return k
- def _pad_1x1_to_3x3_tensor(self, kernel1x1):
- if kernel1x1 is None:
- return 0
- else:
- return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])
- def _fuse_bn_tensor(self, branch):
- if branch is None:
- return 0, 0
- if isinstance(branch, BasicConv):
- kernel = branch.conv.weight
- bias = branch.conv.bias
- return kernel, bias
- elif isinstance(branch, nn.BatchNorm2d):
- if not hasattr(self, 'id_tensor'):
- input_dim = self.in_channels // self.groups
- kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32)
- for i in range(self.in_channels):
- kernel_value[i, i % input_dim, 1, 1] = 1
- self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
- kernel = self.id_tensor
- running_mean = branch.running_mean
- running_var = branch.running_var
- gamma = branch.weight
- beta = branch.bias
- eps = branch.eps
- std = (running_var + eps).sqrt()
- t = (gamma / std).reshape(-1, 1, 1, 1)
- return kernel * t, beta - running_mean * gamma / std
- def switch_to_deploy(self):
- if hasattr(self, 'rbr_reparam'):
- return
- kernel, bias = self.get_equivalent_kernel_bias()
- self.rbr_reparam = nn.Conv2d(in_channels=self.rbr_dense.conv.in_channels, out_channels=self.rbr_dense.conv.out_channels,
- kernel_size=self.rbr_dense.conv.kernel_size, stride=self.rbr_dense.conv.stride,
- padding=self.rbr_dense.conv.padding, dilation=self.rbr_dense.conv.dilation, groups=self.rbr_dense.conv.groups, bias=True)
- self.rbr_reparam.weight.data = kernel
- self.rbr_reparam.bias.data = bias
- for para in self.parameters():
- para.detach_()
- self.__delattr__('rbr_dense')
- self.__delattr__('rbr_1x1')
- if hasattr(self, 'rbr_identity'):
- self.__delattr__('rbr_identity')
- if hasattr(self, 'id_tensor'):
- self.__delattr__('id_tensor')
- self.deploy = True
- # ---------------------------- Basic Modules ----------------------------
- class RepBlock(nn.Module):
- def __init__(self, in_channels, out_channels, num_blocks=1, block=RepVGGBlock):
- super().__init__()
- self.conv1 = block(in_channels, out_channels)
- self.block = nn.Sequential(*(block(out_channels, out_channels)
- for _ in range(num_blocks - 1))) if num_blocks > 1 else nn.Identity()
- if block == BottleRep:
- self.conv1 = BottleRep(in_channels, out_channels, weight=True)
- num_blocks = num_blocks // 2
- self.block = nn.Sequential(*(BottleRep(out_channels, out_channels, weight=True)
- for _ in range(num_blocks - 1))) if num_blocks > 1 else None
- def forward(self, x):
- x = self.conv1(x)
- if self.block is not None:
- x = self.block(x)
- return x
- class BottleRep(nn.Module):
- def __init__(self, in_channels, out_channels, weight=False):
- super().__init__()
- self.conv1 = RepVGGBlock(in_channels, out_channels, kernel_size=3, padding=1, stride=1)
- self.conv2 = RepVGGBlock(out_channels, out_channels, kernel_size=3, padding=1, stride=1)
- if in_channels != out_channels:
- self.shortcut = False
- else:
- self.shortcut = True
- if weight:
- self.alpha = nn.Parameter(torch.ones(1))
- else:
- self.alpha = 1.0
- def forward(self, x):
- outputs = self.conv1(x)
- outputs = self.conv2(outputs)
- return outputs + self.alpha * x if self.shortcut else outputs
- class RepCSPBlock(nn.Module):
- def __init__(self, in_channels, out_channels, num_blocks=1, expansion=0.5):
- super().__init__()
- inter_dim = round(out_channels * expansion) # hidden channels
- self.cv1 = BasicConv(in_channels, inter_dim, kernel_size=1, act_type='relu')
- self.cv2 = BasicConv(in_channels, inter_dim, kernel_size=1, act_type='relu')
- self.cv3 = BasicConv(2 * inter_dim, out_channels, kernel_size=1, act_type='relu')
- self.module = RepBlock(inter_dim, inter_dim, num_blocks, block=BottleRep)
- def forward(self, x):
- x1 = self.cv1(x)
- x2 = self.module(self.cv2(x))
- out = self.cv3(torch.cat((x1, x2), dim=1))
- return out
|