yjh0410 9c6622cdaa update há 1 ano atrás
..
README.md f534400eef update há 1 ano atrás
build.py 264112178f build a new YOLO-Tutorial project for my book há 1 ano atrás
loss.py 264112178f build a new YOLO-Tutorial project for my book há 1 ano atrás
matcher.py 264112178f build a new YOLO-Tutorial project for my book há 1 ano atrás
yolov5_af.py 264112178f build a new YOLO-Tutorial project for my book há 1 ano atrás
yolov5_af_backbone.py ef699ec31b train YOLOv5-AF-S há 1 ano atrás
yolov5_af_basic.py 9c6622cdaa update há 1 ano atrás
yolov5_af_head.py f6aa3d89dd update há 1 ano atrás
yolov5_af_neck.py c304d2acc8 modify init há 1 ano atrás
yolov5_af_pafpn.py c304d2acc8 modify init há 1 ano atrás
yolov5_af_pred.py f6aa3d89dd update há 1 ano atrás

README.md

Anchor-free YOLOv5:

  • VOC
  • COCO
Model Batch Scale APval
0.5
Weight Logs
YOLOv5-AF-S 1xb16 640 82.4 ckpt log
  • For training, we train redesigned YOLOv5-AF with 300 epochs on COCO. We also use the gradient accumulation.
  • For data augmentation, we use the RandomAffine, RandomHSV, Mosaic and YOLOX's Mixup augmentation.
  • For optimizer, we use AdamW with weight decay of 0.05 and per image base lr of 0.001 / 64.
  • For learning rate scheduler, we use cosine decay scheduler.
  • For batch size, we set it to 16, and we also use the gradient accumulation to approximate batch size of 256.

Train YOLOv5-AF

Single GPU

Taking training YOLOv5-AF-S on COCO as the example,

python train.py --cuda -d coco --root path/to/coco -m yolov5_af_s -bs 16 --fp16 

Multi GPU

Taking training YOLOv5-AF-S on COCO as the example,

python -m torch.distributed.run --nproc_per_node=8 train.py --cuda --distributed -d coco --root path/to/coco -m yolov5_af_s -bs 16 --fp16 

Test YOLOv5-AF

Taking testing YOLOv5-AF-S on COCO-val as the example,

python test.py --cuda -d coco --root path/to/coco -m yolov5_af_s --weight path/to/yolov5.pth --show 

Evaluate YOLOv5-AF

Taking evaluating YOLOv5-AF-S on COCO-val as the example,

python eval.py --cuda -d coco --root path/to/coco -m yolov5_af_s --weight path/to/yolov5.pth 

Demo

Detect with Image

python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m yolov5_af_s --weight path/to/weight --show

Detect with Video

python demo.py --mode video --path_to_vid path/to/video --cuda -m yolov5_af_s --weight path/to/weight --show --gif

Detect with Camera

python demo.py --mode camera --cuda -m yolov5_af_s --weight path/to/weight --show --gif
Model Batch Scale APval
0.5:0.95
APval
0.5
FLOPs
(G)
Params
(M)
Weight Logs
YOLOv5-AF-S 1xb16 640 39.6 58.7 26.9 8.9 ckpt log