| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485 |
- import torch
- import torch.nn as nn
- try:
- from .yolov3_basic import BasicConv
- except:
- from yolov3_basic import BasicConv
- # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
- class SPPF(nn.Module):
- """
- This code referenced to https://github.com/ultralytics/yolov5
- """
- def __init__(self, cfg, in_dim, out_dim):
- super().__init__()
- ## ----------- Basic Parameters -----------
- inter_dim = round(in_dim * cfg.neck_expand_ratio)
- self.out_dim = out_dim
- ## ----------- Network Parameters -----------
- self.cv1 = BasicConv(in_dim, inter_dim,
- kernel_size=1, padding=0, stride=1,
- act_type=cfg.neck_act, norm_type=cfg.neck_norm)
- self.cv2 = BasicConv(inter_dim * 4, out_dim,
- kernel_size=1, padding=0, stride=1,
- act_type=cfg.neck_act, norm_type=cfg.neck_norm)
- self.m = nn.MaxPool2d(kernel_size=cfg.spp_pooling_size,
- stride=1,
- padding=cfg.spp_pooling_size // 2)
- # Initialize all layers
- self.init_weights()
- def init_weights(self):
- """Initialize the parameters."""
- for m in self.modules():
- if isinstance(m, torch.nn.Conv2d):
- # In order to be consistent with the source code,
- # reset the Conv2d initialization parameters
- m.reset_parameters()
- def forward(self, x):
- x = self.cv1(x)
- y1 = self.m(x)
- y2 = self.m(y1)
- return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
- if __name__=='__main__':
- import time
- from thop import profile
- # Model config
-
- # YOLOv3-Base config
- class Yolov3BaseConfig(object):
- def __init__(self) -> None:
- # ---------------- Model config ----------------
- self.out_stride = 32
- self.max_stride = 32
- ## Neck
- self.neck_act = 'lrelu'
- self.neck_norm = 'BN'
- self.neck_depthwise = False
- self.neck_expand_ratio = 0.5
- self.spp_pooling_size = 5
- cfg = Yolov3BaseConfig()
- # Build a head
- in_dim = 512
- out_dim = 512
- neck = SPPF(cfg, in_dim, out_dim)
- # Inference
- x = torch.randn(1, in_dim, 20, 20)
- t0 = time.time()
- output = neck(x)
- t1 = time.time()
- print('Time: ', t1 - t0)
- print('Neck output: ', output.shape)
- flops, params = profile(neck, inputs=(x, ), verbose=False)
- print('==============================')
- print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
- print('Params : {:.2f} M'.format(params / 1e6))
|