yolov2_pred.py 5.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145
  1. import torch
  2. import torch.nn as nn
  3. # -------------------- Detection Pred Layer --------------------
  4. ## Single-level pred layer
  5. class Yolov2DetPredLayer(nn.Module):
  6. def __init__(self, cfg):
  7. super().__init__()
  8. # --------- Basic Parameters ----------
  9. self.stride = cfg.out_stride
  10. self.cls_dim = cfg.head_dim
  11. self.reg_dim = cfg.head_dim
  12. self.num_classes = cfg.num_classes
  13. # ------------------- Anchor box -------------------
  14. self.anchor_size = torch.as_tensor(cfg.anchor_sizes).float().view(-1, 2) # [A, 2]
  15. self.num_anchors = self.anchor_size.shape[0]
  16. # --------- Network Parameters ----------
  17. self.obj_pred = nn.Conv2d(self.cls_dim, 1 * self.num_anchors, kernel_size=1)
  18. self.cls_pred = nn.Conv2d(self.cls_dim, self.num_classes * self.num_anchors, kernel_size=1)
  19. self.reg_pred = nn.Conv2d(self.reg_dim, 4 * self.num_anchors, kernel_size=1)
  20. self.init_bias()
  21. def init_bias(self):
  22. # Init bias
  23. init_prob = 0.01
  24. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  25. # obj pred
  26. b = self.obj_pred.bias.view(1, -1)
  27. b.data.fill_(bias_value.item())
  28. self.obj_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  29. # cls pred
  30. b = self.cls_pred.bias.view(1, -1)
  31. b.data.fill_(bias_value.item())
  32. self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  33. # reg pred
  34. b = self.reg_pred.bias.view(-1, )
  35. b.data.fill_(1.0)
  36. self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  37. w = self.reg_pred.weight
  38. w.data.fill_(0.)
  39. self.reg_pred.weight = torch.nn.Parameter(w, requires_grad=True)
  40. def generate_anchors(self, fmp_size):
  41. """
  42. fmp_size: (List) [H, W]
  43. """
  44. # 特征图的宽和高
  45. fmp_h, fmp_w = fmp_size
  46. # 生成网格的x坐标和y坐标
  47. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  48. # 将xy两部分的坐标拼起来:[H, W, 2] -> [HW, 2]
  49. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  50. # [HW, 2] -> [HW, A, 2] -> [M, 2], M=HWA
  51. anchor_xy = anchor_xy.unsqueeze(1).repeat(1, self.num_anchors, 1)
  52. anchor_xy = anchor_xy.view(-1, 2)
  53. # [A, 2] -> [1, A, 2] -> [HW, A, 2] -> [M, 2], M=HWA
  54. anchor_wh = self.anchor_size.unsqueeze(0).repeat(fmp_h*fmp_w, 1, 1)
  55. anchor_wh = anchor_wh.view(-1, 2)
  56. anchors = torch.cat([anchor_xy, anchor_wh], dim=-1)
  57. return anchors
  58. def forward(self, cls_feat, reg_feat):
  59. # 预测层
  60. obj_pred = self.obj_pred(cls_feat)
  61. cls_pred = self.cls_pred(cls_feat)
  62. reg_pred = self.reg_pred(reg_feat)
  63. # 生成网格坐标
  64. B, _, H, W = cls_pred.size()
  65. fmp_size = [H, W]
  66. anchors = self.generate_anchors(fmp_size)
  67. anchors = anchors.to(cls_pred.device)
  68. # 对 pred 的size做一些view调整,便于后续的处理
  69. # [B, C*A, H, W] -> [B, H, W, C*A] -> [B, H*W*A, C]
  70. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1)
  71. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  72. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  73. # 解算边界框坐标
  74. cxcy_pred = (torch.sigmoid(reg_pred[..., :2]) + anchors[..., :2]) * self.stride
  75. bwbh_pred = torch.exp(reg_pred[..., 2:]) * anchors[..., 2:]
  76. pred_x1y1 = cxcy_pred - bwbh_pred * 0.5
  77. pred_x2y2 = cxcy_pred + bwbh_pred * 0.5
  78. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  79. # output dict
  80. outputs = {"pred_obj": obj_pred, # (torch.Tensor) [B, M, 1]
  81. "pred_cls": cls_pred, # (torch.Tensor) [B, M, C]
  82. "pred_reg": reg_pred, # (torch.Tensor) [B, M, 4]
  83. "pred_box": box_pred, # (torch.Tensor) [B, M, 4]
  84. "anchors" : anchors, # (torch.Tensor) [M, 2]
  85. "fmp_size": fmp_size,
  86. "stride" : self.stride, # (Int)
  87. }
  88. return outputs
  89. if __name__=='__main__':
  90. import time
  91. from thop import profile
  92. # Model config
  93. # YOLOv8-Base config
  94. class Yolov2BaseConfig(object):
  95. def __init__(self) -> None:
  96. # ---------------- Model config ----------------
  97. self.out_stride = 32
  98. self.max_stride = 32
  99. ## Head
  100. self.head_dim = 512
  101. self.anchor_sizes = [[17, 25], [55, 75], [92, 206], [202, 21], [289, 311]]
  102. cfg = Yolov2BaseConfig()
  103. cfg.num_classes = 20
  104. # Build a pred layer
  105. pred = Yolov2DetPredLayer(cfg)
  106. # Inference
  107. cls_feat = torch.randn(1, cfg.head_dim, 20, 20)
  108. reg_feat = torch.randn(1, cfg.head_dim, 20, 20)
  109. t0 = time.time()
  110. output = pred(cls_feat, reg_feat)
  111. t1 = time.time()
  112. print('Time: ', t1 - t0)
  113. print('====== Pred output ======= ')
  114. for k in output:
  115. if isinstance(output[k], torch.Tensor):
  116. print("-{}: ".format(k), output[k].shape)
  117. else:
  118. print("-{}: ".format(k), output[k])
  119. flops, params = profile(pred, inputs=(cls_feat, reg_feat, ), verbose=False)
  120. print('==============================')
  121. print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
  122. print('Params : {:.2f} M'.format(params / 1e6))