| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249 |
- import torch
- import torch.nn as nn
- import torch.utils.model_zoo as model_zoo
- __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
- 'resnet152']
- model_urls = {
- 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
- 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
- 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
- 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
- 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
- }
- # --------------------- ResNet modules ---------------------
- def conv3x3(in_planes, out_planes, stride=1):
- """3x3 convolution with padding"""
- return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
- padding=1, bias=False)
- def conv1x1(in_planes, out_planes, stride=1):
- """1x1 convolution"""
- return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
- class BasicBlock(nn.Module):
- expansion = 1
- def __init__(self, inplanes, planes, stride=1, downsample=None):
- super(BasicBlock, self).__init__()
- self.conv1 = conv3x3(inplanes, planes, stride)
- self.bn1 = nn.BatchNorm2d(planes)
- self.relu = nn.ReLU(inplace=True)
- self.conv2 = conv3x3(planes, planes)
- self.bn2 = nn.BatchNorm2d(planes)
- self.downsample = downsample
- self.stride = stride
- def forward(self, x):
- identity = x
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
- out = self.conv2(out)
- out = self.bn2(out)
- if self.downsample is not None:
- identity = self.downsample(x)
- out += identity
- out = self.relu(out)
- return out
- class Bottleneck(nn.Module):
- expansion = 4
- def __init__(self, inplanes, planes, stride=1, downsample=None):
- super(Bottleneck, self).__init__()
- self.conv1 = conv1x1(inplanes, planes)
- self.bn1 = nn.BatchNorm2d(planes)
- self.conv2 = conv3x3(planes, planes, stride)
- self.bn2 = nn.BatchNorm2d(planes)
- self.conv3 = conv1x1(planes, planes * self.expansion)
- self.bn3 = nn.BatchNorm2d(planes * self.expansion)
- self.relu = nn.ReLU(inplace=True)
- self.downsample = downsample
- self.stride = stride
- def forward(self, x):
- identity = x
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
- out = self.conv2(out)
- out = self.bn2(out)
- out = self.relu(out)
- out = self.conv3(out)
- out = self.bn3(out)
- if self.downsample is not None:
- identity = self.downsample(x)
- out += identity
- out = self.relu(out)
- return out
- # --------------------- ResNet -----------------------
- class ResNet(nn.Module):
- def __init__(self, block, layers):
- super(ResNet, self).__init__()
- self.inplanes = 64
- self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
- self.bn1 = nn.BatchNorm2d(64)
- self.relu = nn.ReLU(inplace=True)
- self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
- self.layer1 = self._make_layer(block, 64, layers[0])
- self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
- self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
- self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
- elif isinstance(m, nn.BatchNorm2d):
- nn.init.constant_(m.weight, 1)
- nn.init.constant_(m.bias, 0)
- def _make_layer(self, block, planes, blocks, stride=1):
- downsample = None
- if stride != 1 or self.inplanes != planes * block.expansion:
- downsample = nn.Sequential(
- conv1x1(self.inplanes, planes * block.expansion, stride),
- nn.BatchNorm2d(planes * block.expansion),
- )
- layers = []
- layers.append(block(self.inplanes, planes, stride, downsample))
- self.inplanes = planes * block.expansion
- for _ in range(1, blocks):
- layers.append(block(self.inplanes, planes))
- return nn.Sequential(*layers)
- def forward(self, x):
- """
- Input:
- x: (Tensor) -> [B, C, H, W]
- Output:
- c5: (Tensor) -> [B, C, H/32, W/32]
- """
- c1 = self.conv1(x) # [B, C, H/2, W/2]
- c1 = self.bn1(c1) # [B, C, H/2, W/2]
- c1 = self.relu(c1) # [B, C, H/2, W/2]
- c2 = self.maxpool(c1) # [B, C, H/4, W/4]
- c2 = self.layer1(c2) # [B, C, H/4, W/4]
- c3 = self.layer2(c2) # [B, C, H/8, W/8]
- c4 = self.layer3(c3) # [B, C, H/16, W/16]
- c5 = self.layer4(c4) # [B, C, H/32, W/32]
- return c5
- # --------------------- Functions -----------------------
- def build_resnet(model_name="resnet18", pretrained=False):
- if model_name == 'resnet18':
- model = resnet18(pretrained)
- feat_dim = 512
- elif model_name == 'resnet34':
- model = resnet34(pretrained)
- feat_dim = 512
- elif model_name == 'resnet50':
- model = resnet50(pretrained)
- feat_dim = 2048
- elif model_name == 'resnet101':
- model = resnet34(pretrained)
- feat_dim = 2048
- else:
- raise NotImplementedError("Unknown resnet: {}".format(model_name))
-
- return model, feat_dim
- def resnet18(pretrained=False, **kwargs):
- """Constructs a ResNet-18 model.
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- """
- model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
- if pretrained:
- # strict = False as we don't need fc layer params.
- model.load_state_dict(model_zoo.load_url(model_urls['resnet18']), strict=False)
- return model
- def resnet34(pretrained=False, **kwargs):
- """Constructs a ResNet-34 model.
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- """
- model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
- if pretrained:
- model.load_state_dict(model_zoo.load_url(model_urls['resnet34']), strict=False)
- return model
- def resnet50(pretrained=False, **kwargs):
- """Constructs a ResNet-50 model.
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- """
- model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
- if pretrained:
- model.load_state_dict(model_zoo.load_url(model_urls['resnet50']), strict=False)
- return model
- def resnet101(pretrained=False, **kwargs):
- """Constructs a ResNet-101 model.
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- """
- model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
- if pretrained:
- model.load_state_dict(model_zoo.load_url(model_urls['resnet101']), strict=False)
- return model
- def resnet152(pretrained=False, **kwargs):
- """Constructs a ResNet-152 model.
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- """
- model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
- if pretrained:
- model.load_state_dict(model_zoo.load_url(model_urls['resnet152']), strict=False)
- return model
- if __name__=='__main__':
- import time
- from thop import profile
- # Build backbone
- model, _ = build_resnet(model_name='resnet18')
- # Inference
- x = torch.randn(1, 3, 640, 640)
- t0 = time.time()
- output = model(x)
- t1 = time.time()
- print('Time: ', t1 - t0)
- print(output.shape)
- print('==============================')
- flops, params = profile(model, inputs=(x, ), verbose=False)
- print('==============================')
- print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
- print('Params : {:.2f} M'.format(params / 1e6))
|