resnet.py 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249
  1. import torch
  2. import torch.nn as nn
  3. import torch.utils.model_zoo as model_zoo
  4. __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
  5. 'resnet152']
  6. model_urls = {
  7. 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
  8. 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
  9. 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
  10. 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
  11. 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
  12. }
  13. # --------------------- ResNet modules ---------------------
  14. def conv3x3(in_planes, out_planes, stride=1):
  15. """3x3 convolution with padding"""
  16. return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
  17. padding=1, bias=False)
  18. def conv1x1(in_planes, out_planes, stride=1):
  19. """1x1 convolution"""
  20. return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
  21. class BasicBlock(nn.Module):
  22. expansion = 1
  23. def __init__(self, inplanes, planes, stride=1, downsample=None):
  24. super(BasicBlock, self).__init__()
  25. self.conv1 = conv3x3(inplanes, planes, stride)
  26. self.bn1 = nn.BatchNorm2d(planes)
  27. self.relu = nn.ReLU(inplace=True)
  28. self.conv2 = conv3x3(planes, planes)
  29. self.bn2 = nn.BatchNorm2d(planes)
  30. self.downsample = downsample
  31. self.stride = stride
  32. def forward(self, x):
  33. identity = x
  34. out = self.conv1(x)
  35. out = self.bn1(out)
  36. out = self.relu(out)
  37. out = self.conv2(out)
  38. out = self.bn2(out)
  39. if self.downsample is not None:
  40. identity = self.downsample(x)
  41. out += identity
  42. out = self.relu(out)
  43. return out
  44. class Bottleneck(nn.Module):
  45. expansion = 4
  46. def __init__(self, inplanes, planes, stride=1, downsample=None):
  47. super(Bottleneck, self).__init__()
  48. self.conv1 = conv1x1(inplanes, planes)
  49. self.bn1 = nn.BatchNorm2d(planes)
  50. self.conv2 = conv3x3(planes, planes, stride)
  51. self.bn2 = nn.BatchNorm2d(planes)
  52. self.conv3 = conv1x1(planes, planes * self.expansion)
  53. self.bn3 = nn.BatchNorm2d(planes * self.expansion)
  54. self.relu = nn.ReLU(inplace=True)
  55. self.downsample = downsample
  56. self.stride = stride
  57. def forward(self, x):
  58. identity = x
  59. out = self.conv1(x)
  60. out = self.bn1(out)
  61. out = self.relu(out)
  62. out = self.conv2(out)
  63. out = self.bn2(out)
  64. out = self.relu(out)
  65. out = self.conv3(out)
  66. out = self.bn3(out)
  67. if self.downsample is not None:
  68. identity = self.downsample(x)
  69. out += identity
  70. out = self.relu(out)
  71. return out
  72. # --------------------- ResNet -----------------------
  73. class ResNet(nn.Module):
  74. def __init__(self, block, layers):
  75. super(ResNet, self).__init__()
  76. self.inplanes = 64
  77. self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
  78. self.bn1 = nn.BatchNorm2d(64)
  79. self.relu = nn.ReLU(inplace=True)
  80. self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
  81. self.layer1 = self._make_layer(block, 64, layers[0])
  82. self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
  83. self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
  84. self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
  85. for m in self.modules():
  86. if isinstance(m, nn.Conv2d):
  87. nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
  88. elif isinstance(m, nn.BatchNorm2d):
  89. nn.init.constant_(m.weight, 1)
  90. nn.init.constant_(m.bias, 0)
  91. def _make_layer(self, block, planes, blocks, stride=1):
  92. downsample = None
  93. if stride != 1 or self.inplanes != planes * block.expansion:
  94. downsample = nn.Sequential(
  95. conv1x1(self.inplanes, planes * block.expansion, stride),
  96. nn.BatchNorm2d(planes * block.expansion),
  97. )
  98. layers = []
  99. layers.append(block(self.inplanes, planes, stride, downsample))
  100. self.inplanes = planes * block.expansion
  101. for _ in range(1, blocks):
  102. layers.append(block(self.inplanes, planes))
  103. return nn.Sequential(*layers)
  104. def forward(self, x):
  105. """
  106. Input:
  107. x: (Tensor) -> [B, C, H, W]
  108. Output:
  109. c5: (Tensor) -> [B, C, H/32, W/32]
  110. """
  111. c1 = self.conv1(x) # [B, C, H/2, W/2]
  112. c1 = self.bn1(c1) # [B, C, H/2, W/2]
  113. c1 = self.relu(c1) # [B, C, H/2, W/2]
  114. c2 = self.maxpool(c1) # [B, C, H/4, W/4]
  115. c2 = self.layer1(c2) # [B, C, H/4, W/4]
  116. c3 = self.layer2(c2) # [B, C, H/8, W/8]
  117. c4 = self.layer3(c3) # [B, C, H/16, W/16]
  118. c5 = self.layer4(c4) # [B, C, H/32, W/32]
  119. return c5
  120. # --------------------- Functions -----------------------
  121. def build_resnet(model_name="resnet18", pretrained=False):
  122. if model_name == 'resnet18':
  123. model = resnet18(pretrained)
  124. feat_dim = 512
  125. elif model_name == 'resnet34':
  126. model = resnet34(pretrained)
  127. feat_dim = 512
  128. elif model_name == 'resnet50':
  129. model = resnet50(pretrained)
  130. feat_dim = 2048
  131. elif model_name == 'resnet101':
  132. model = resnet34(pretrained)
  133. feat_dim = 2048
  134. else:
  135. raise NotImplementedError("Unknown resnet: {}".format(model_name))
  136. return model, feat_dim
  137. def resnet18(pretrained=False, **kwargs):
  138. """Constructs a ResNet-18 model.
  139. Args:
  140. pretrained (bool): If True, returns a model pre-trained on ImageNet
  141. """
  142. model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
  143. if pretrained:
  144. # strict = False as we don't need fc layer params.
  145. model.load_state_dict(model_zoo.load_url(model_urls['resnet18']), strict=False)
  146. return model
  147. def resnet34(pretrained=False, **kwargs):
  148. """Constructs a ResNet-34 model.
  149. Args:
  150. pretrained (bool): If True, returns a model pre-trained on ImageNet
  151. """
  152. model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
  153. if pretrained:
  154. model.load_state_dict(model_zoo.load_url(model_urls['resnet34']), strict=False)
  155. return model
  156. def resnet50(pretrained=False, **kwargs):
  157. """Constructs a ResNet-50 model.
  158. Args:
  159. pretrained (bool): If True, returns a model pre-trained on ImageNet
  160. """
  161. model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
  162. if pretrained:
  163. model.load_state_dict(model_zoo.load_url(model_urls['resnet50']), strict=False)
  164. return model
  165. def resnet101(pretrained=False, **kwargs):
  166. """Constructs a ResNet-101 model.
  167. Args:
  168. pretrained (bool): If True, returns a model pre-trained on ImageNet
  169. """
  170. model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
  171. if pretrained:
  172. model.load_state_dict(model_zoo.load_url(model_urls['resnet101']), strict=False)
  173. return model
  174. def resnet152(pretrained=False, **kwargs):
  175. """Constructs a ResNet-152 model.
  176. Args:
  177. pretrained (bool): If True, returns a model pre-trained on ImageNet
  178. """
  179. model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
  180. if pretrained:
  181. model.load_state_dict(model_zoo.load_url(model_urls['resnet152']), strict=False)
  182. return model
  183. if __name__=='__main__':
  184. import time
  185. from thop import profile
  186. # Build backbone
  187. model, _ = build_resnet(model_name='resnet18')
  188. # Inference
  189. x = torch.randn(1, 3, 640, 640)
  190. t0 = time.time()
  191. output = model(x)
  192. t1 = time.time()
  193. print('Time: ', t1 - t0)
  194. print(output.shape)
  195. print('==============================')
  196. flops, params = profile(model, inputs=(x, ), verbose=False)
  197. print('==============================')
  198. print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
  199. print('Params : {:.2f} M'.format(params / 1e6))