yjh0410 9c6622cdaa update před 1 rokem
..
README.md 264112178f build a new YOLO-Tutorial project for my book před 1 rokem
build.py 264112178f build a new YOLO-Tutorial project for my book před 1 rokem
loss.py 264112178f build a new YOLO-Tutorial project for my book před 1 rokem
matcher.py 264112178f build a new YOLO-Tutorial project for my book před 1 rokem
resnet.py 264112178f build a new YOLO-Tutorial project for my book před 1 rokem
yolov1.py 264112178f build a new YOLO-Tutorial project for my book před 1 rokem
yolov1_backbone.py 264112178f build a new YOLO-Tutorial project for my book před 1 rokem
yolov1_basic.py 9c6622cdaa update před 1 rokem
yolov1_head.py 264112178f build a new YOLO-Tutorial project for my book před 1 rokem
yolov1_neck.py 87d5a72477 modify init před 1 rokem
yolov1_pred.py 606c352336 modify pred init před 1 rokem

README.md

Redesigned YOLOv1:

  • VOC
  • COCO
Model Backbone Batch Scale APval
0.5
Weight Logs
YOLOv1 ResNet-18 1xb16 640 75.0 ckpt log
  • For training, we train redesigned YOLOv1 with 150 epochs on COCO.
  • For data augmentation, we use the SSD's augmentation, including the RandomCrop, RandomDistort, RandomExpand, RandomHFlip and so on.
  • For optimizer, we use AdamW with weight decay of 0.05 and per image base lr of 0.001 / 64.
  • For learning rate scheduler, we use cosine decay scheduler.
  • For batch size, we set it to 16, and we also use the gradient accumulation to approximate batch size of 256.

Train YOLOv1

Single GPU

Taking training YOLOv1-R18 on COCO as the example,

python train.py --cuda -d coco --root path/to/coco -m yolov1_r18 -bs 16 --fp16 

Multi GPU

Taking training YOLOv1-R18 on COCO as the example,

python -m torch.distributed.run --nproc_per_node=8 train.py --cuda --distributed -d coco --root path/to/coco -m yolov1_r18 -bs 16 --fp16 

Test YOLOv1

Taking testing YOLOv1-R18 on COCO-val as the example,

python test.py --cuda -d coco --root path/to/coco -m yolov1_r18 --weight path/to/yolov1.pth --show 

Evaluate YOLOv1

Taking evaluating YOLOv1-R18 on COCO-val as the example,

python eval.py --cuda -d coco --root path/to/coco -m yolov1_r18 --weight path/to/yolov1.pth 

Demo

Detect with Image

python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m yolov1_r18 --weight path/to/weight --show

Detect with Video

python demo.py --mode video --path_to_vid path/to/video --cuda -m yolov1_r18 --weight path/to/weight --show --gif

Detect with Camera

python demo.py --mode camera --cuda -m yolov1_r18 --weight path/to/weight --show --gif
Model Backbone Batch Scale APval
0.5:0.95
APval
0.5
FLOPs
(G)
Params
(M)
Weight Logs
YOLOv1 ResNet-18 1xb16 640 27.6 46.8 37.8 21.3 ckpt log