matcher.py 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199
  1. import torch
  2. import torch.nn as nn
  3. import torch.nn.functional as F
  4. from utils.box_ops import bbox_iou
  5. # -------------------------- Task Aligned Assigner --------------------------
  6. class TaskAlignedAssigner(nn.Module):
  7. def __init__(self,
  8. num_classes = 80,
  9. topk_candidates = 10,
  10. alpha = 0.5,
  11. beta = 6.0,
  12. eps = 1e-9):
  13. super(TaskAlignedAssigner, self).__init__()
  14. self.topk_candidates = topk_candidates
  15. self.num_classes = num_classes
  16. self.bg_idx = num_classes
  17. self.alpha = alpha
  18. self.beta = beta
  19. self.eps = eps
  20. @torch.no_grad()
  21. def forward(self,
  22. pd_scores,
  23. pd_bboxes,
  24. anc_points,
  25. gt_labels,
  26. gt_bboxes):
  27. self.bs = pd_scores.size(0)
  28. self.n_max_boxes = gt_bboxes.size(1)
  29. mask_pos, align_metric, overlaps = self.get_pos_mask(
  30. pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points)
  31. target_gt_idx, fg_mask, mask_pos = select_highest_overlaps(
  32. mask_pos, overlaps, self.n_max_boxes)
  33. # Assigned target
  34. target_labels, target_bboxes, target_scores = self.get_targets(
  35. gt_labels, gt_bboxes, target_gt_idx, fg_mask)
  36. # normalize
  37. align_metric *= mask_pos
  38. pos_align_metrics = align_metric.amax(axis=-1, keepdim=True) # b, max_num_obj
  39. pos_overlaps = (overlaps * mask_pos).amax(axis=-1, keepdim=True) # b, max_num_obj
  40. norm_align_metric = (align_metric * pos_overlaps / (pos_align_metrics + self.eps)).amax(-2).unsqueeze(-1)
  41. target_scores = target_scores * norm_align_metric
  42. return target_labels, target_bboxes, target_scores, fg_mask.bool(), target_gt_idx
  43. def get_pos_mask(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points):
  44. # get in_gts mask, (b, max_num_obj, h*w)
  45. mask_in_gts = select_candidates_in_gts(anc_points, gt_bboxes)
  46. # get anchor_align metric, (b, max_num_obj, h*w)
  47. align_metric, overlaps = self.get_box_metrics(pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_in_gts)
  48. # get topk_metric mask, (b, max_num_obj, h*w)
  49. mask_topk = self.select_topk_candidates(align_metric)
  50. # merge all mask to a final mask, (b, max_num_obj, h*w)
  51. mask_pos = mask_topk * mask_in_gts
  52. return mask_pos, align_metric, overlaps
  53. def get_box_metrics(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_in_gts):
  54. """Compute alignment metric given predicted and ground truth bounding boxes."""
  55. na = pd_bboxes.shape[-2]
  56. mask_in_gts = mask_in_gts.bool() # b, max_num_obj, h*w
  57. overlaps = torch.zeros([self.bs, self.n_max_boxes, na], dtype=pd_bboxes.dtype, device=pd_bboxes.device)
  58. bbox_scores = torch.zeros([self.bs, self.n_max_boxes, na], dtype=pd_scores.dtype, device=pd_scores.device)
  59. ind = torch.zeros([2, self.bs, self.n_max_boxes], dtype=torch.long) # 2, b, max_num_obj
  60. ind[0] = torch.arange(end=self.bs).view(-1, 1).expand(-1, self.n_max_boxes) # b, max_num_obj
  61. ind[1] = gt_labels.squeeze(-1) # b, max_num_obj
  62. # Get the scores of each grid for each gt cls
  63. bbox_scores[mask_in_gts] = pd_scores[ind[0], :, ind[1]][mask_in_gts] # b, max_num_obj, h*w
  64. # (b, max_num_obj, 1, 4), (b, 1, h*w, 4)
  65. pd_boxes = pd_bboxes.unsqueeze(1).expand(-1, self.n_max_boxes, -1, -1)[mask_in_gts]
  66. gt_boxes = gt_bboxes.unsqueeze(2).expand(-1, -1, na, -1)[mask_in_gts]
  67. overlaps[mask_in_gts] = bbox_iou(gt_boxes, pd_boxes, xywh=False, CIoU=True).squeeze(-1).clamp_(0)
  68. align_metric = bbox_scores.pow(self.alpha) * overlaps.pow(self.beta)
  69. return align_metric, overlaps
  70. def select_topk_candidates(self, metrics, largest=True):
  71. """
  72. Args:
  73. metrics: (b, max_num_obj, h*w).
  74. topk_mask: (b, max_num_obj, topk) or None
  75. """
  76. # (b, max_num_obj, topk)
  77. topk_metrics, topk_idxs = torch.topk(metrics, self.topk_candidates, dim=-1, largest=largest)
  78. topk_mask = (topk_metrics.max(-1, keepdim=True)[0] > self.eps).expand_as(topk_idxs)
  79. # (b, max_num_obj, topk)
  80. topk_idxs.masked_fill_(~topk_mask, 0)
  81. # (b, max_num_obj, topk, h*w) -> (b, max_num_obj, h*w)
  82. count_tensor = torch.zeros(metrics.shape, dtype=torch.int8, device=topk_idxs.device)
  83. ones = torch.ones_like(topk_idxs[:, :, :1], dtype=torch.int8, device=topk_idxs.device)
  84. for k in range(self.topk_candidates):
  85. # Expand topk_idxs for each value of k and add 1 at the specified positions
  86. count_tensor.scatter_add_(-1, topk_idxs[:, :, k:k + 1], ones)
  87. # count_tensor.scatter_add_(-1, topk_idxs, torch.ones_like(topk_idxs, dtype=torch.int8, device=topk_idxs.device))
  88. # Filter invalid bboxes
  89. count_tensor.masked_fill_(count_tensor > 1, 0)
  90. return count_tensor.to(metrics.dtype)
  91. def get_targets(self, gt_labels, gt_bboxes, target_gt_idx, fg_mask):
  92. # Assigned target labels, (b, 1)
  93. batch_ind = torch.arange(end=self.bs, dtype=torch.int64, device=gt_labels.device)[..., None]
  94. target_gt_idx = target_gt_idx + batch_ind * self.n_max_boxes # (b, h*w)
  95. target_labels = gt_labels.long().flatten()[target_gt_idx] # (b, h*w)
  96. # Assigned target boxes, (b, max_num_obj, 4) -> (b, h*w, 4)
  97. target_bboxes = gt_bboxes.view(-1, 4)[target_gt_idx]
  98. # Assigned target scores
  99. target_labels.clamp_(0)
  100. # 10x faster than F.one_hot()
  101. target_scores = torch.zeros((target_labels.shape[0], target_labels.shape[1], self.num_classes),
  102. dtype=torch.int64,
  103. device=target_labels.device) # (b, h*w, 80)
  104. target_scores.scatter_(2, target_labels.unsqueeze(-1), 1)
  105. fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.num_classes) # (b, h*w, 80)
  106. target_scores = torch.where(fg_scores_mask > 0, target_scores, 0)
  107. return target_labels, target_bboxes, target_scores
  108. # -------------------------- Basic Functions --------------------------
  109. def select_candidates_in_gts(xy_centers, gt_bboxes, eps=1e-9):
  110. """select the positive anchors's center in gt
  111. Args:
  112. xy_centers (Tensor): shape(bs*n_max_boxes, num_total_anchors, 4)
  113. gt_bboxes (Tensor): shape(bs, n_max_boxes, 4)
  114. Return:
  115. (Tensor): shape(bs, n_max_boxes, num_total_anchors)
  116. """
  117. n_anchors = xy_centers.size(0)
  118. bs, n_max_boxes, _ = gt_bboxes.size()
  119. _gt_bboxes = gt_bboxes.reshape([-1, 4])
  120. xy_centers = xy_centers.unsqueeze(0).repeat(bs * n_max_boxes, 1, 1)
  121. gt_bboxes_lt = _gt_bboxes[:, 0:2].unsqueeze(1).repeat(1, n_anchors, 1)
  122. gt_bboxes_rb = _gt_bboxes[:, 2:4].unsqueeze(1).repeat(1, n_anchors, 1)
  123. b_lt = xy_centers - gt_bboxes_lt
  124. b_rb = gt_bboxes_rb - xy_centers
  125. bbox_deltas = torch.cat([b_lt, b_rb], dim=-1)
  126. bbox_deltas = bbox_deltas.reshape([bs, n_max_boxes, n_anchors, -1])
  127. return (bbox_deltas.min(axis=-1)[0] > eps).to(gt_bboxes.dtype)
  128. def select_highest_overlaps(mask_pos, overlaps, n_max_boxes):
  129. """if an anchor box is assigned to multiple gts,
  130. the one with the highest iou will be selected.
  131. Args:
  132. mask_pos (Tensor): shape(bs, n_max_boxes, num_total_anchors)
  133. overlaps (Tensor): shape(bs, n_max_boxes, num_total_anchors)
  134. Return:
  135. target_gt_idx (Tensor): shape(bs, num_total_anchors)
  136. fg_mask (Tensor): shape(bs, num_total_anchors)
  137. mask_pos (Tensor): shape(bs, n_max_boxes, num_total_anchors)
  138. """
  139. fg_mask = mask_pos.sum(-2)
  140. if fg_mask.max() > 1: # one anchor is assigned to multiple gt_bboxes
  141. mask_multi_gts = (fg_mask.unsqueeze(1) > 1).expand(-1, n_max_boxes, -1) # (b, n_max_boxes, h*w)
  142. max_overlaps_idx = overlaps.argmax(1) # (b, h*w)
  143. is_max_overlaps = torch.zeros(mask_pos.shape, dtype=mask_pos.dtype, device=mask_pos.device)
  144. is_max_overlaps.scatter_(1, max_overlaps_idx.unsqueeze(1), 1)
  145. mask_pos = torch.where(mask_multi_gts, is_max_overlaps, mask_pos).float() # (b, n_max_boxes, h*w)
  146. fg_mask = mask_pos.sum(-2)
  147. # Find each grid serve which gt(index)
  148. target_gt_idx = mask_pos.argmax(-2) # (b, h*w)
  149. return target_gt_idx, fg_mask, mask_pos
  150. def iou_calculator(box1, box2, eps=1e-9):
  151. """Calculate iou for batch
  152. Args:
  153. box1 (Tensor): shape(bs, n_max_boxes, 1, 4)
  154. box2 (Tensor): shape(bs, 1, num_total_anchors, 4)
  155. Return:
  156. (Tensor): shape(bs, n_max_boxes, num_total_anchors)
  157. """
  158. box1 = box1.unsqueeze(2) # [N, M1, 4] -> [N, M1, 1, 4]
  159. box2 = box2.unsqueeze(1) # [N, M2, 4] -> [N, 1, M2, 4]
  160. px1y1, px2y2 = box1[:, :, :, 0:2], box1[:, :, :, 2:4]
  161. gx1y1, gx2y2 = box2[:, :, :, 0:2], box2[:, :, :, 2:4]
  162. x1y1 = torch.maximum(px1y1, gx1y1)
  163. x2y2 = torch.minimum(px2y2, gx2y2)
  164. overlap = (x2y2 - x1y1).clip(0).prod(-1)
  165. area1 = (px2y2 - px1y1).clip(0).prod(-1)
  166. area2 = (gx2y2 - gx1y1).clip(0).prod(-1)
  167. union = area1 + area2 - overlap + eps
  168. return overlap / union