gelan_neck.py 2.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354
  1. import torch
  2. import torch.nn as nn
  3. from .gelan_basic import BasicConv
  4. # SPPF (from yolov5)
  5. class SPPF(nn.Module):
  6. """
  7. This code referenced to https://github.com/ultralytics/yolov5
  8. """
  9. def __init__(self, cfg, in_dim, out_dim):
  10. super().__init__()
  11. ## ----------- Basic Parameters -----------
  12. inter_dim = round(in_dim * cfg.neck_expand_ratio)
  13. self.out_dim = out_dim
  14. ## ----------- Network Parameters -----------
  15. self.cv1 = BasicConv(in_dim, inter_dim,
  16. kernel_size=1, padding=0, stride=1,
  17. act_type=cfg.neck_act, norm_type=cfg.neck_norm)
  18. self.cv2 = BasicConv(inter_dim * 4, out_dim,
  19. kernel_size=1, padding=0, stride=1,
  20. act_type=cfg.neck_act, norm_type=cfg.neck_norm)
  21. self.m = nn.MaxPool2d(kernel_size=cfg.spp_pooling_size,
  22. stride=1,
  23. padding=cfg.spp_pooling_size // 2)
  24. def forward(self, x):
  25. x = self.cv1(x)
  26. y1 = self.m(x)
  27. y2 = self.m(y1)
  28. return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
  29. # SPP-ELAN (from yolov9)
  30. class SPPElan(nn.Module):
  31. def __init__(self, cfg, in_dim):
  32. """SPPElan looks like the SPPF."""
  33. super().__init__()
  34. ## ----------- Basic Parameters -----------
  35. self.in_dim = in_dim
  36. self.inter_dim = cfg.spp_inter_dim
  37. self.out_dim = cfg.spp_out_dim
  38. ## ----------- Network Parameters -----------
  39. self.conv_layer_1 = BasicConv(in_dim, self.inter_dim, kernel_size=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm)
  40. self.conv_layer_2 = BasicConv(self.inter_dim * 4, self.out_dim, kernel_size=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm)
  41. self.pool_layer = nn.MaxPool2d(kernel_size=cfg.spp_pooling_size, stride=1, padding=cfg.spp_pooling_size // 2)
  42. def forward(self, x):
  43. y = [self.conv_layer_1(x)]
  44. y.extend(self.pool_layer(y[-1]) for _ in range(3))
  45. return self.conv_layer_2(torch.cat(y, 1))