| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566 |
- import torch
- import torch.nn as nn
- try:
- from .modules import ConvModule
- except:
- from modules import ConvModule
- # SPP-ELAN (from yolov9)
- class SPPElan(nn.Module):
- def __init__(self, cfg, in_dim):
- """SPPElan looks like the SPPF."""
- super().__init__()
- ## ----------- Basic Parameters -----------
- self.in_dim = in_dim
- self.inter_dim = cfg.spp_inter_dim
- self.out_dim = cfg.spp_out_dim
- ## ----------- Network Parameters -----------
- self.conv_layer_1 = ConvModule(in_dim, self.inter_dim, kernel_size=1)
- self.conv_layer_2 = ConvModule(self.inter_dim * 4, self.out_dim, kernel_size=1)
- self.pool_layer = nn.MaxPool2d(kernel_size=5, stride=1, padding=2)
- # Initialize all layers
- self.init_weights()
- def init_weights(self):
- """Initialize the parameters."""
- for m in self.modules():
- if isinstance(m, torch.nn.Conv2d):
- m.reset_parameters()
- def forward(self, x):
- y = [self.conv_layer_1(x)]
- y.extend(self.pool_layer(y[-1]) for _ in range(3))
-
- return self.conv_layer_2(torch.cat(y, 1))
- if __name__=='__main__':
- from thop import profile
- class BaseConfig(object):
- def __init__(self) -> None:
- self.spp_inter_dim = 512
- self.spp_out_dim = 512
- # 定义模型配置文件
- cfg = BaseConfig()
- # Build a neck
- in_dim = 512
- model = SPPElan(cfg, in_dim)
- # Randomly generate a input data
- x = torch.randn(2, in_dim, 20, 20)
- # Inference
- output = model(x)
- print(' - the shape of input : ', x.shape)
- print(' - the shape of output : ', output.shape)
- x = torch.randn(1, in_dim, 20, 20)
- flops, params = profile(model, inputs=(x, ), verbose=False)
- print('============== FLOPs & Params ================')
- print(' - FLOPs : {:.2f} G'.format(flops / 1e9 * 2))
- print(' - Params : {:.2f} M'.format(params / 1e6))
|