yolof_head.py 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185
  1. import math
  2. import torch
  3. import torch.nn as nn
  4. from ..basic.conv import BasicConv
  5. class YolofHead(nn.Module):
  6. def __init__(self, cfg, in_dim, out_dim,):
  7. super().__init__()
  8. self.fmp_size = None
  9. self.ctr_clamp = cfg.center_clamp
  10. self.DEFAULT_EXP_CLAMP = math.log(1e8)
  11. self.DEFAULT_SCALE_CLAMP = math.log(1000.0 / 16)
  12. # ------------------ Basic parameters -------------------
  13. self.cfg = cfg
  14. self.in_dim = in_dim
  15. self.stride = cfg.out_stride
  16. self.num_classes = cfg.num_classes
  17. self.num_cls_head = cfg.num_cls_head
  18. self.num_reg_head = cfg.num_reg_head
  19. self.act_type = cfg.head_act
  20. self.norm_type = cfg.head_norm
  21. # Anchor config
  22. self.anchor_size = torch.as_tensor(cfg.anchor_size)
  23. self.num_anchors = len(cfg.anchor_size)
  24. # ------------------ Network parameters -------------------
  25. ## cls head
  26. cls_heads = []
  27. self.cls_head_dim = out_dim
  28. for i in range(self.num_cls_head):
  29. if i == 0:
  30. cls_heads.append(
  31. BasicConv(in_dim, self.cls_head_dim,
  32. kernel_size=3, padding=1, stride=1,
  33. act_type=self.act_type, norm_type=self.norm_type)
  34. )
  35. else:
  36. cls_heads.append(
  37. BasicConv(self.cls_head_dim, self.cls_head_dim,
  38. kernel_size=3, padding=1, stride=1,
  39. act_type=self.act_type, norm_type=self.norm_type)
  40. )
  41. ## reg head
  42. reg_heads = []
  43. self.reg_head_dim = out_dim
  44. for i in range(self.num_reg_head):
  45. if i == 0:
  46. reg_heads.append(
  47. BasicConv(in_dim, self.reg_head_dim,
  48. kernel_size=3, padding=1, stride=1,
  49. act_type=self.act_type, norm_type=self.norm_type)
  50. )
  51. else:
  52. reg_heads.append(
  53. BasicConv(self.reg_head_dim, self.reg_head_dim,
  54. kernel_size=3, padding=1, stride=1,
  55. act_type=self.act_type, norm_type=self.norm_type)
  56. )
  57. self.cls_heads = nn.Sequential(*cls_heads)
  58. self.reg_heads = nn.Sequential(*reg_heads)
  59. # pred layer
  60. self.obj_pred = nn.Conv2d(self.reg_head_dim, 1 * self.num_anchors, kernel_size=3, padding=1)
  61. self.cls_pred = nn.Conv2d(self.cls_head_dim, self.num_classes * self.num_anchors, kernel_size=3, padding=1)
  62. self.reg_pred = nn.Conv2d(self.reg_head_dim, 4 * self.num_anchors, kernel_size=3, padding=1)
  63. # init bias
  64. self._init_pred_layers()
  65. def _init_pred_layers(self):
  66. # init cls pred
  67. nn.init.normal_(self.cls_pred.weight, mean=0, std=0.01)
  68. init_prob = 0.01
  69. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  70. nn.init.constant_(self.cls_pred.bias, bias_value)
  71. # init reg pred
  72. nn.init.normal_(self.reg_pred.weight, mean=0, std=0.01)
  73. nn.init.constant_(self.reg_pred.bias, 0.0)
  74. # init obj pred
  75. nn.init.normal_(self.obj_pred.weight, mean=0, std=0.01)
  76. nn.init.constant_(self.obj_pred.bias, 0.0)
  77. def get_anchors(self, fmp_size):
  78. """fmp_size: list -> [H, W] \n
  79. stride: int -> output stride
  80. """
  81. # check anchor boxes
  82. if self.fmp_size is not None and self.fmp_size == fmp_size:
  83. return self.anchor_boxes
  84. else:
  85. # generate grid cells
  86. fmp_h, fmp_w = fmp_size
  87. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  88. # [H, W, 2] -> [HW, 2]
  89. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2) + 0.5
  90. # [HW, 2] -> [HW, 1, 2] -> [HW, KA, 2]
  91. anchor_xy = anchor_xy[:, None, :].repeat(1, self.num_anchors, 1)
  92. anchor_xy *= self.stride
  93. # [KA, 2] -> [1, KA, 2] -> [HW, KA, 2]
  94. anchor_wh = self.anchor_size[None, :, :].repeat(fmp_h*fmp_w, 1, 1)
  95. # [HW, KA, 4] -> [M, 4]
  96. anchor_boxes = torch.cat([anchor_xy, anchor_wh], dim=-1)
  97. anchor_boxes = anchor_boxes.view(-1, 4)
  98. self.anchor_boxes = anchor_boxes
  99. self.fmp_size = fmp_size
  100. return anchor_boxes
  101. def decode_boxes(self, anchor_boxes, pred_reg):
  102. """
  103. anchor_boxes: (List[tensor]) [1, M, 4]
  104. pred_reg: (List[tensor]) [B, M, 4]
  105. """
  106. # x = x_anchor + dx * w_anchor
  107. # y = y_anchor + dy * h_anchor
  108. pred_ctr_offset = pred_reg[..., :2] * anchor_boxes[..., 2:]
  109. pred_ctr_offset = torch.clamp(pred_ctr_offset, min=-self.ctr_clamp, max=self.ctr_clamp)
  110. pred_ctr_xy = anchor_boxes[..., :2] + pred_ctr_offset
  111. # w = w_anchor * exp(tw)
  112. # h = h_anchor * exp(th)
  113. pred_dwdh = pred_reg[..., 2:]
  114. pred_dwdh = torch.clamp(pred_dwdh, max=self.DEFAULT_SCALE_CLAMP)
  115. pred_wh = anchor_boxes[..., 2:] * pred_dwdh.exp()
  116. # convert [x, y, w, h] -> [x1, y1, x2, y2]
  117. pred_x1y1 = pred_ctr_xy - 0.5 * pred_wh
  118. pred_x2y2 = pred_ctr_xy + 0.5 * pred_wh
  119. pred_box = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  120. return pred_box
  121. def forward(self, x, mask=None):
  122. # ------------------- Decoupled head -------------------
  123. cls_feats = self.cls_heads(x)
  124. reg_feats = self.reg_heads(x)
  125. # ------------------- Generate anchor box -------------------
  126. fmp_size = cls_feats.shape[2:]
  127. anchor_boxes = self.get_anchors(fmp_size) # [M, 4]
  128. anchor_boxes = anchor_boxes.to(cls_feats.device)
  129. # ------------------- Predict -------------------
  130. obj_pred = self.obj_pred(reg_feats)
  131. cls_pred = self.cls_pred(cls_feats)
  132. reg_pred = self.reg_pred(reg_feats)
  133. # ------------------- Precoess preds -------------------
  134. ## implicit objectness
  135. B, _, H, W = obj_pred.size()
  136. obj_pred = obj_pred.view(B, -1, 1, H, W)
  137. cls_pred = cls_pred.view(B, -1, self.num_classes, H, W)
  138. normalized_cls_pred = cls_pred + obj_pred - torch.log(
  139. 1. +
  140. torch.clamp(cls_pred, max=self.DEFAULT_EXP_CLAMP).exp() +
  141. torch.clamp(obj_pred, max=self.DEFAULT_EXP_CLAMP).exp())
  142. # [B, KA, C, H, W] -> [B, H, W, KA, C] -> [B, M, C], M = HxWxKA
  143. normalized_cls_pred = normalized_cls_pred.permute(0, 3, 4, 1, 2).contiguous()
  144. normalized_cls_pred = normalized_cls_pred.view(B, -1, self.num_classes)
  145. # [B, KA*4, H, W] -> [B, KA, 4, H, W] -> [B, H, W, KA, 4] -> [B, M, 4]
  146. reg_pred = reg_pred.view(B, -1, 4, H, W).permute(0, 3, 4, 1, 2).contiguous()
  147. reg_pred = reg_pred.view(B, -1, 4)
  148. ## Decode bbox
  149. box_pred = self.decode_boxes(anchor_boxes[None], reg_pred) # [B, M, 4]
  150. ## adjust mask
  151. if mask is not None:
  152. # [B, H, W]
  153. mask = torch.nn.functional.interpolate(mask[None].float(), size=fmp_size).bool()[0]
  154. # [B, H, W] -> [B, HW]
  155. mask = mask.flatten(1)
  156. # [B, HW] -> [B, HW, KA] -> [BM,], M= HW x KA
  157. mask = mask[..., None].repeat(1, 1, self.num_anchors).flatten()
  158. outputs = {"pred_cls": normalized_cls_pred,
  159. "pred_reg": reg_pred,
  160. "pred_box": box_pred,
  161. "anchors": anchor_boxes,
  162. "mask": mask}
  163. return outputs