| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336 |
- import torch
- import torch.nn as nn
- from ..basic.conv import BasicConv
- class Scale(nn.Module):
- """
- Multiply the output regression range by a learnable constant value
- """
- def __init__(self, init_value=1.0):
- """
- init_value : initial value for the scalar
- """
- super().__init__()
- self.scale = nn.Parameter(
- torch.tensor(init_value, dtype=torch.float32),
- requires_grad=True
- )
- def forward(self, x):
- """
- input -> scale * input
- """
- return x * self.scale
- class FcosHead(nn.Module):
- def __init__(self, cfg, in_dim, out_dim,):
- super().__init__()
- self.fmp_size = None
- # ------------------ Basic parameters -------------------
- self.cfg = cfg
- self.in_dim = in_dim
- self.stride = cfg.out_stride
- self.num_classes = cfg.num_classes
- self.num_cls_head = cfg.num_cls_head
- self.num_reg_head = cfg.num_reg_head
- self.act_type = cfg.head_act
- self.norm_type = cfg.head_norm
- # ------------------ Network parameters -------------------
- ## cls head
- cls_heads = []
- self.cls_head_dim = out_dim
- for i in range(self.num_cls_head):
- if i == 0:
- cls_heads.append(
- BasicConv(in_dim, self.cls_head_dim,
- kernel_size=3, padding=1, stride=1,
- act_type=self.act_type, norm_type=self.norm_type)
- )
- else:
- cls_heads.append(
- BasicConv(self.cls_head_dim, self.cls_head_dim,
- kernel_size=3, padding=1, stride=1,
- act_type=self.act_type, norm_type=self.norm_type)
- )
-
- ## reg head
- reg_heads = []
- self.reg_head_dim = out_dim
- for i in range(self.num_reg_head):
- if i == 0:
- reg_heads.append(
- BasicConv(in_dim, self.reg_head_dim,
- kernel_size=3, padding=1, stride=1,
- act_type=self.act_type, norm_type=self.norm_type)
- )
- else:
- reg_heads.append(
- BasicConv(self.reg_head_dim, self.reg_head_dim,
- kernel_size=3, padding=1, stride=1,
- act_type=self.act_type, norm_type=self.norm_type)
- )
- self.cls_heads = nn.Sequential(*cls_heads)
- self.reg_heads = nn.Sequential(*reg_heads)
- ## pred layers
- self.cls_pred = nn.Conv2d(self.cls_head_dim, cfg.num_classes, kernel_size=3, padding=1)
- self.reg_pred = nn.Conv2d(self.reg_head_dim, 4, kernel_size=3, padding=1)
- self.ctn_pred = nn.Conv2d(self.reg_head_dim, 1, kernel_size=3, padding=1)
-
- ## scale layers
- self.scales = nn.ModuleList(
- Scale() for _ in range(len(self.stride))
- )
-
- # init bias
- self._init_layers()
- def _init_layers(self):
- for module in [self.cls_heads, self.reg_heads, self.cls_pred, self.reg_pred, self.ctn_pred]:
- for layer in module.modules():
- if isinstance(layer, nn.Conv2d):
- torch.nn.init.normal_(layer.weight, mean=0, std=0.01)
- if layer.bias is not None:
- torch.nn.init.constant_(layer.bias, 0)
- if isinstance(layer, nn.GroupNorm):
- torch.nn.init.constant_(layer.weight, 1)
- if layer.bias is not None:
- torch.nn.init.constant_(layer.bias, 0)
- # init the bias of cls pred
- init_prob = 0.01
- bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
- torch.nn.init.constant_(self.cls_pred.bias, bias_value)
-
- def get_anchors(self, level, fmp_size):
- """
- fmp_size: (List) [H, W]
- """
- # generate grid cells
- fmp_h, fmp_w = fmp_size
- anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
- # [H, W, 2] -> [HW, 2]
- anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2) + 0.5
- anchors *= self.stride[level]
- return anchors
-
- def decode_boxes(self, pred_deltas, anchors):
- """
- pred_deltas: (List[Tensor]) [B, M, 4] or [M, 4] (l, t, r, b)
- anchors: (List[Tensor]) [1, M, 2] or [M, 2]
- """
- # x1 = x_anchor - l, x2 = x_anchor + r
- # y1 = y_anchor - t, y2 = y_anchor + b
- pred_x1y1 = anchors - pred_deltas[..., :2]
- pred_x2y2 = anchors + pred_deltas[..., 2:]
- pred_box = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
- return pred_box
-
- def forward(self, pyramid_feats, mask=None):
- all_masks = []
- all_anchors = []
- all_cls_preds = []
- all_reg_preds = []
- all_box_preds = []
- all_ctn_preds = []
- for level, feat in enumerate(pyramid_feats):
- # ------------------- Decoupled head -------------------
- cls_feat = self.cls_heads(feat)
- reg_feat = self.reg_heads(feat)
- # ------------------- Generate anchor box -------------------
- B, _, H, W = cls_feat.size()
- fmp_size = [H, W]
- anchors = self.get_anchors(level, fmp_size) # [M, 4]
- anchors = anchors.to(cls_feat.device)
- # ------------------- Predict -------------------
- cls_pred = self.cls_pred(cls_feat)
- reg_pred = self.reg_pred(reg_feat)
- ctn_pred = self.ctn_pred(reg_feat)
- # ------------------- Process preds -------------------
- ## [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
- cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
- ctn_pred = ctn_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1)
- reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
- reg_pred = nn.functional.relu(self.scales[level](reg_pred)) * self.stride[level]
- ## Decode bbox
- box_pred = self.decode_boxes(reg_pred, anchors)
- ## Adjust mask
- if mask is not None:
- # [B, H, W]
- mask_i = torch.nn.functional.interpolate(mask[None].float(), size=[H, W]).bool()[0]
- # [B, H, W] -> [B, M]
- mask_i = mask_i.flatten(1)
- all_masks.append(mask_i)
-
- all_anchors.append(anchors)
- all_cls_preds.append(cls_pred)
- all_reg_preds.append(reg_pred)
- all_box_preds.append(box_pred)
- all_ctn_preds.append(ctn_pred)
- outputs = {"pred_cls": all_cls_preds, # List [B, M, C]
- "pred_reg": all_reg_preds, # List [B, M, 4]
- "pred_box": all_box_preds, # List [B, M, 4]
- "pred_ctn": all_ctn_preds, # List [B, M, 1]
- "anchors": all_anchors, # List [B, M, 2]
- "strides": self.stride,
- "mask": all_masks} # List [B, M,]
- return outputs
- class FcosRTHead(nn.Module):
- def __init__(self, cfg, in_dim, out_dim,):
- super().__init__()
- self.fmp_size = None
- # ------------------ Basic parameters -------------------
- self.cfg = cfg
- self.in_dim = in_dim
- self.stride = cfg.out_stride
- self.num_classes = cfg.num_classes
- self.num_cls_head = cfg.num_cls_head
- self.num_reg_head = cfg.num_reg_head
- self.act_type = cfg.head_act
- self.norm_type = cfg.head_norm
- # ------------------ Network parameters -------------------
- ## cls head
- cls_heads = []
- self.cls_head_dim = out_dim
- for i in range(self.num_cls_head):
- if i == 0:
- cls_heads.append(
- BasicConv(in_dim, self.cls_head_dim,
- kernel_size=3, padding=1, stride=1,
- act_type=self.act_type, norm_type=self.norm_type)
- )
- else:
- cls_heads.append(
- BasicConv(self.cls_head_dim, self.cls_head_dim,
- kernel_size=3, padding=1, stride=1,
- act_type=self.act_type, norm_type=self.norm_type)
- )
-
- ## reg head
- reg_heads = []
- self.reg_head_dim = out_dim
- for i in range(self.num_reg_head):
- if i == 0:
- reg_heads.append(
- BasicConv(in_dim, self.reg_head_dim,
- kernel_size=3, padding=1, stride=1,
- act_type=self.act_type, norm_type=self.norm_type)
- )
- else:
- reg_heads.append(
- BasicConv(self.reg_head_dim, self.reg_head_dim,
- kernel_size=3, padding=1, stride=1,
- act_type=self.act_type, norm_type=self.norm_type)
- )
- self.cls_heads = nn.Sequential(*cls_heads)
- self.reg_heads = nn.Sequential(*reg_heads)
- ## pred layers
- self.cls_pred = nn.Conv2d(self.cls_head_dim, cfg.num_classes, kernel_size=3, padding=1)
- self.reg_pred = nn.Conv2d(self.reg_head_dim, 4, kernel_size=3, padding=1)
-
- # init bias
- self._init_layers()
- def _init_layers(self):
- for module in [self.cls_heads, self.reg_heads, self.cls_pred, self.reg_pred]:
- for layer in module.modules():
- if isinstance(layer, nn.Conv2d):
- torch.nn.init.normal_(layer.weight, mean=0, std=0.01)
- if layer.bias is not None:
- torch.nn.init.constant_(layer.bias, 0)
- if isinstance(layer, nn.GroupNorm):
- torch.nn.init.constant_(layer.weight, 1)
- if layer.bias is not None:
- torch.nn.init.constant_(layer.bias, 0)
- # init the bias of cls pred
- init_prob = 0.01
- bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
- torch.nn.init.constant_(self.cls_pred.bias, bias_value)
-
- def get_anchors(self, level, fmp_size):
- """
- fmp_size: (List) [H, W]
- """
- # generate grid cells
- fmp_h, fmp_w = fmp_size
- anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
- # [H, W, 2] -> [HW, 2]
- anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2) + 0.5
- anchors *= self.stride[level]
- return anchors
-
- def decode_boxes(self, pred_deltas, anchors, stride):
- """
- pred_deltas: (List[Tensor]) [B, M, 4] or [M, 4] (dx, dy, dw, dh)
- anchors: (List[Tensor]) [1, M, 2] or [M, 2]
- """
- pred_cxcy = anchors + pred_deltas[..., :2] * stride
- pred_bwbh = pred_deltas[..., 2:].exp() * stride
- pred_x1y1 = pred_cxcy - 0.5 * pred_bwbh
- pred_x2y2 = pred_cxcy + 0.5 * pred_bwbh
- pred_box = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
- return pred_box
-
- def forward(self, pyramid_feats, mask=None):
- all_masks = []
- all_anchors = []
- all_cls_preds = []
- all_reg_preds = []
- all_box_preds = []
- for level, feat in enumerate(pyramid_feats):
- # ------------------- Decoupled head -------------------
- cls_feat = self.cls_heads(feat)
- reg_feat = self.reg_heads(feat)
- # ------------------- Generate anchor box -------------------
- B, _, H, W = cls_feat.size()
- fmp_size = [H, W]
- anchors = self.get_anchors(level, fmp_size) # [M, 4]
- anchors = anchors.to(cls_feat.device)
- # ------------------- Predict -------------------
- cls_pred = self.cls_pred(cls_feat)
- reg_pred = self.reg_pred(reg_feat)
- # ------------------- Process preds -------------------
- ## [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
- cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
- reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
- box_pred = self.decode_boxes(reg_pred, anchors, self.stride[level])
- ## Adjust mask
- if mask is not None:
- # [B, H, W]
- mask_i = torch.nn.functional.interpolate(mask[None].float(), size=[H, W]).bool()[0]
- # [B, H, W] -> [B, M]
- mask_i = mask_i.flatten(1)
- all_masks.append(mask_i)
-
- all_anchors.append(anchors)
- all_cls_preds.append(cls_pred)
- all_reg_preds.append(reg_pred)
- all_box_preds.append(box_pred)
- outputs = {"pred_cls": all_cls_preds, # List [B, M, C]
- "pred_reg": all_reg_preds, # List [B, M, 4]
- "pred_box": all_box_preds, # List [B, M, 4]
- "anchors": all_anchors, # List [B, M, 2]
- "strides": self.stride,
- "mask": all_masks} # List [B, M,]
- return outputs
|