criterion.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283
  1. import torch
  2. import torch.nn as nn
  3. import torch.nn.functional as F
  4. from utils.box_ops import get_ious
  5. from utils.misc import sigmoid_focal_loss
  6. from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
  7. from .matcher import FcosMatcher, SimOtaMatcher
  8. class SetCriterion(nn.Module):
  9. def __init__(self, cfg):
  10. super().__init__()
  11. # ------------- Basic parameters -------------
  12. self.cfg = cfg
  13. self.num_classes = cfg.num_classes
  14. # ------------- Focal loss -------------
  15. self.alpha = cfg.focal_loss_alpha
  16. self.gamma = cfg.focal_loss_gamma
  17. # ------------- Loss weight -------------
  18. # ------------- Matcher & Loss weight -------------
  19. self.matcher_cfg = cfg.matcher_hpy
  20. if cfg.matcher == 'fcos_matcher':
  21. self.weight_dict = {'loss_cls': cfg.loss_cls_weight,
  22. 'loss_reg': cfg.loss_reg_weight,
  23. 'loss_ctn': cfg.loss_ctn_weight}
  24. self.matcher = FcosMatcher(cfg.num_classes,
  25. self.matcher_cfg['center_sampling_radius'],
  26. self.matcher_cfg['object_sizes_of_interest'],
  27. [1., 1., 1., 1.]
  28. )
  29. elif cfg.matcher == 'simota':
  30. self.weight_dict = {'loss_cls': cfg.loss_cls_weight,
  31. 'loss_reg': cfg.loss_reg_weight}
  32. self.matcher = SimOtaMatcher(cfg.num_classes,
  33. self.matcher_cfg['soft_center_radius'],
  34. self.matcher_cfg['topk_candidates'])
  35. else:
  36. raise NotImplementedError("Unknown matcher: {}.".format(cfg.matcher))
  37. def loss_labels(self, pred_cls, tgt_cls, num_boxes=1.0):
  38. """
  39. pred_cls: (Tensor) [N, C]
  40. tgt_cls: (Tensor) [N, C]
  41. """
  42. # cls loss: [V, C]
  43. loss_cls = sigmoid_focal_loss(pred_cls, tgt_cls, self.alpha, self.gamma)
  44. return loss_cls.sum() / num_boxes
  45. def loss_labels_qfl(self, pred_cls, target, beta=2.0, num_boxes=1.0):
  46. # Quality FocalLoss
  47. """
  48. pred_cls: (torch.Tensor): [N, C]。
  49. target: (tuple([torch.Tensor], [torch.Tensor])): label -> (N,), score -> (N)
  50. """
  51. label, score = target
  52. pred_sigmoid = pred_cls.sigmoid()
  53. scale_factor = pred_sigmoid
  54. zerolabel = scale_factor.new_zeros(pred_cls.shape)
  55. ce_loss = F.binary_cross_entropy_with_logits(
  56. pred_cls, zerolabel, reduction='none') * scale_factor.pow(beta)
  57. bg_class_ind = pred_cls.shape[-1]
  58. pos = ((label >= 0) & (label < bg_class_ind)).nonzero().squeeze(1)
  59. if pos.shape[0] > 0:
  60. pos_label = label[pos].long()
  61. scale_factor = score[pos] - pred_sigmoid[pos, pos_label]
  62. ce_loss[pos, pos_label] = F.binary_cross_entropy_with_logits(
  63. pred_cls[pos, pos_label], score[pos],
  64. reduction='none') * scale_factor.abs().pow(beta)
  65. return ce_loss.sum() / num_boxes
  66. def loss_bboxes_ltrb(self, pred_delta, tgt_delta, bbox_quality=None, num_boxes=1.0):
  67. """
  68. pred_box: (Tensor) [N, 4]
  69. tgt_box: (Tensor) [N, 4]
  70. """
  71. pred_delta = torch.cat((-pred_delta[..., :2], pred_delta[..., 2:]), dim=-1)
  72. tgt_delta = torch.cat((-tgt_delta[..., :2], tgt_delta[..., 2:]), dim=-1)
  73. eps = torch.finfo(torch.float32).eps
  74. pred_area = (pred_delta[..., 2] - pred_delta[..., 0]).clamp_(min=0) \
  75. * (pred_delta[..., 3] - pred_delta[..., 1]).clamp_(min=0)
  76. tgt_area = (tgt_delta[..., 2] - tgt_delta[..., 0]).clamp_(min=0) \
  77. * (tgt_delta[..., 3] - tgt_delta[..., 1]).clamp_(min=0)
  78. w_intersect = (torch.min(pred_delta[..., 2], tgt_delta[..., 2])
  79. - torch.max(pred_delta[..., 0], tgt_delta[..., 0])).clamp_(min=0)
  80. h_intersect = (torch.min(pred_delta[..., 3], tgt_delta[..., 3])
  81. - torch.max(pred_delta[..., 1], tgt_delta[..., 1])).clamp_(min=0)
  82. area_intersect = w_intersect * h_intersect
  83. area_union = tgt_area + pred_area - area_intersect
  84. ious = area_intersect / area_union.clamp(min=eps)
  85. # giou
  86. g_w_intersect = torch.max(pred_delta[..., 2], tgt_delta[..., 2]) \
  87. - torch.min(pred_delta[..., 0], tgt_delta[..., 0])
  88. g_h_intersect = torch.max(pred_delta[..., 3], tgt_delta[..., 3]) \
  89. - torch.min(pred_delta[..., 1], tgt_delta[..., 1])
  90. ac_uion = g_w_intersect * g_h_intersect
  91. gious = ious - (ac_uion - area_union) / ac_uion.clamp(min=eps)
  92. loss_box = 1 - gious
  93. if bbox_quality is not None:
  94. loss_box = loss_box * bbox_quality.view(loss_box.size())
  95. return loss_box.sum() / num_boxes
  96. def loss_bboxes_xyxy(self, pred_box, gt_box, num_boxes=1.0, box_weight=None):
  97. ious = get_ious(pred_box, gt_box, box_mode="xyxy", iou_type='giou')
  98. loss_box = 1.0 - ious
  99. if box_weight is not None:
  100. loss_box = loss_box.squeeze(-1) * box_weight
  101. return loss_box.sum() / num_boxes
  102. def fcos_loss(self, outputs, targets):
  103. """
  104. outputs['pred_cls']: (Tensor) [B, M, C]
  105. outputs['pred_reg']: (Tensor) [B, M, 4]
  106. outputs['pred_ctn']: (Tensor) [B, M, 1]
  107. outputs['strides']: (List) [8, 16, 32, ...] stride of the model output
  108. targets: (List) [dict{'boxes': [...],
  109. 'labels': [...],
  110. 'orig_size': ...}, ...]
  111. """
  112. # -------------------- Pre-process --------------------
  113. device = outputs['pred_cls'][0].device
  114. fpn_strides = outputs['strides']
  115. anchors = outputs['anchors']
  116. pred_cls = torch.cat(outputs['pred_cls'], dim=1).view(-1, self.num_classes)
  117. pred_delta = torch.cat(outputs['pred_reg'], dim=1).view(-1, 4)
  118. pred_ctn = torch.cat(outputs['pred_ctn'], dim=1).view(-1, 1)
  119. masks = ~torch.cat(outputs['mask'], dim=1).view(-1)
  120. # -------------------- Label Assignment --------------------
  121. gt_classes, gt_deltas, gt_centerness = self.matcher(fpn_strides, anchors, targets)
  122. gt_classes = gt_classes.flatten().to(device)
  123. gt_deltas = gt_deltas.view(-1, 4).to(device)
  124. gt_centerness = gt_centerness.view(-1, 1).to(device)
  125. foreground_idxs = (gt_classes >= 0) & (gt_classes != self.num_classes)
  126. num_foreground = foreground_idxs.sum()
  127. if is_dist_avail_and_initialized():
  128. torch.distributed.all_reduce(num_foreground)
  129. num_foreground = torch.clamp(num_foreground / get_world_size(), min=1).item()
  130. num_foreground_centerness = gt_centerness[foreground_idxs].sum()
  131. if is_dist_avail_and_initialized():
  132. torch.distributed.all_reduce(num_foreground_centerness)
  133. num_targets = torch.clamp(num_foreground_centerness / get_world_size(), min=1).item()
  134. # -------------------- classification loss --------------------
  135. gt_classes_target = torch.zeros_like(pred_cls)
  136. gt_classes_target[foreground_idxs, gt_classes[foreground_idxs]] = 1
  137. valid_idxs = (gt_classes >= 0) & masks
  138. loss_labels = self.loss_labels(
  139. pred_cls[valid_idxs], gt_classes_target[valid_idxs], num_foreground)
  140. # -------------------- regression loss --------------------
  141. loss_bboxes = self.loss_bboxes_ltrb(
  142. pred_delta[foreground_idxs], gt_deltas[foreground_idxs], gt_centerness[foreground_idxs], num_targets)
  143. # -------------------- centerness loss --------------------
  144. loss_centerness = F.binary_cross_entropy_with_logits(
  145. pred_ctn[foreground_idxs], gt_centerness[foreground_idxs], reduction='none')
  146. loss_centerness = loss_centerness.sum() / num_foreground
  147. loss_dict = dict(
  148. loss_cls = loss_labels,
  149. loss_reg = loss_bboxes,
  150. loss_ctn = loss_centerness,
  151. )
  152. return loss_dict
  153. def ota_loss(self, outputs, targets):
  154. """
  155. outputs['pred_cls']: (Tensor) [B, M, C]
  156. outputs['pred_reg']: (Tensor) [B, M, 4]
  157. outputs['pred_box']: (Tensor) [B, M, 4]
  158. outputs['strides']: (List) [8, 16, 32, ...] stride of the model output
  159. targets: (List) [dict{'boxes': [...],
  160. 'labels': [...],
  161. 'orig_size': ...}, ...]
  162. """
  163. # -------------------- Pre-process --------------------
  164. bs = outputs['pred_cls'][0].shape[0]
  165. device = outputs['pred_cls'][0].device
  166. fpn_strides = outputs['strides']
  167. anchors = outputs['anchors']
  168. # preds: [B, M, C]
  169. # preds: [B, M, C]
  170. cls_preds = torch.cat(outputs['pred_cls'], dim=1)
  171. box_preds = torch.cat(outputs['pred_box'], dim=1)
  172. masks = ~torch.cat(outputs['mask'], dim=1).view(-1)
  173. # -------------------- Label Assignment --------------------
  174. cls_targets = []
  175. box_targets = []
  176. assign_metrics = []
  177. for batch_idx in range(bs):
  178. tgt_labels = targets[batch_idx]["labels"].to(device) # [N,]
  179. tgt_bboxes = targets[batch_idx]["boxes"].to(device) # [N, 4]
  180. # refine target
  181. tgt_boxes_wh = tgt_bboxes[..., 2:] - tgt_bboxes[..., :2]
  182. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  183. keep = (min_tgt_size >= 8)
  184. tgt_bboxes = tgt_bboxes[keep]
  185. tgt_labels = tgt_labels[keep]
  186. # label assignment
  187. assigned_result = self.matcher(fpn_strides=fpn_strides,
  188. anchors=anchors,
  189. pred_cls=cls_preds[batch_idx].detach(),
  190. pred_box=box_preds[batch_idx].detach(),
  191. gt_labels=tgt_labels,
  192. gt_bboxes=tgt_bboxes
  193. )
  194. cls_targets.append(assigned_result['assigned_labels'])
  195. box_targets.append(assigned_result['assigned_bboxes'])
  196. assign_metrics.append(assigned_result['assign_metrics'])
  197. # List[B, M, C] -> Tensor[BM, C]
  198. cls_targets = torch.cat(cls_targets, dim=0)
  199. box_targets = torch.cat(box_targets, dim=0)
  200. assign_metrics = torch.cat(assign_metrics, dim=0)
  201. valid_idxs = (cls_targets >= 0) & masks
  202. foreground_idxs = (cls_targets >= 0) & (cls_targets != self.num_classes)
  203. num_fgs = assign_metrics.sum()
  204. if is_dist_avail_and_initialized():
  205. torch.distributed.all_reduce(num_fgs)
  206. num_fgs = torch.clamp(num_fgs / get_world_size(), min=1).item()
  207. # -------------------- classification loss --------------------
  208. cls_preds = cls_preds.view(-1, self.num_classes)[valid_idxs]
  209. qfl_targets = (cls_targets[valid_idxs], assign_metrics[valid_idxs])
  210. loss_labels = self.loss_labels_qfl(cls_preds, qfl_targets, 2.0, num_fgs)
  211. # -------------------- regression loss --------------------
  212. box_preds_pos = box_preds.view(-1, 4)[foreground_idxs]
  213. box_targets_pos = box_targets[foreground_idxs]
  214. box_weight = assign_metrics[foreground_idxs]
  215. loss_bboxes = self.loss_bboxes_xyxy(box_preds_pos, box_targets_pos, num_fgs, box_weight)
  216. loss_dict = dict(
  217. loss_cls = loss_labels,
  218. loss_reg = loss_bboxes,
  219. )
  220. return loss_dict
  221. def forward(self, outputs, targets):
  222. """
  223. outputs['pred_cls']: (Tensor) [B, M, C]
  224. outputs['pred_reg']: (Tensor) [B, M, 4]
  225. outputs['pred_ctn']: (Tensor) [B, M, 1]
  226. outputs['strides']: (List) [8, 16, 32, ...] stride of the model output
  227. targets: (List) [dict{'boxes': [...],
  228. 'labels': [...],
  229. 'orig_size': ...}, ...]
  230. """
  231. if self.cfg.matcher == "fcos_matcher":
  232. return self.fcos_loss(outputs, targets)
  233. elif self.cfg.matcher == "simota":
  234. return self.ota_loss(outputs, targets)
  235. else:
  236. raise NotImplementedError
  237. if __name__ == "__main__":
  238. pass