| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from typing import List
- try:
- from .yolov8_basic import BasicConv, ELANLayer
- except:
- from yolov8_basic import BasicConv, ELANLayer
- # YOLOv8's PaFPN
- class Yolov8PaFPN(nn.Module):
- def __init__(self,
- cfg,
- in_dims :List = [256, 512, 1024],
- ) -> None:
- super(Yolov8PaFPN, self).__init__()
- print('==============================')
- print('FPN: {}'.format("Yolo PaFPN"))
- # --------------------------- Basic Parameters ---------------------------
- self.in_dims = in_dims[::-1]
- self.out_dims = [round(256*cfg.width), round(512*cfg.width), round(512*cfg.width*cfg.ratio)]
- # ----------------------------- Yolov8's Top-down FPN -----------------------------
- ## P5 -> P4
- self.top_down_layer_1 = ELANLayer(in_dim = self.in_dims[0] + self.in_dims[1],
- out_dim = round(512*cfg.width),
- expansion = 0.5,
- num_blocks = round(3 * cfg.depth),
- shortcut = False,
- act_type = cfg.fpn_act,
- norm_type = cfg.fpn_norm,
- depthwise = cfg.fpn_depthwise,
- )
- ## P4 -> P3
- self.top_down_layer_2 = ELANLayer(in_dim = self.in_dims[2] + round(512*cfg.width),
- out_dim = round(256*cfg.width),
- expansion = 0.5,
- num_blocks = round(3 * cfg.depth),
- shortcut = False,
- act_type = cfg.fpn_act,
- norm_type = cfg.fpn_norm,
- depthwise = cfg.fpn_depthwise,
- )
- # ----------------------------- Yolov8's Bottom-up PAN -----------------------------
- ## P3 -> P4
- self.dowmsample_layer_1 = BasicConv(round(256*cfg.width), round(256*cfg.width),
- kernel_size=3, padding=1, stride=2,
- act_type=cfg.fpn_act, norm_type=cfg.fpn_norm, depthwise=cfg.fpn_depthwise)
- self.bottom_up_layer_1 = ELANLayer(in_dim = round(256*cfg.width) + round(512*cfg.width),
- out_dim = round(512*cfg.width),
- expansion = 0.5,
- num_blocks = round(3 * cfg.depth),
- shortcut = False,
- act_type = cfg.fpn_act,
- norm_type = cfg.fpn_norm,
- depthwise = cfg.fpn_depthwise,
- )
- ## P4 -> P5
- self.dowmsample_layer_2 = BasicConv(round(512*cfg.width), round(512*cfg.width),
- kernel_size=3, padding=1, stride=2,
- act_type=cfg.fpn_act, norm_type=cfg.fpn_norm, depthwise=cfg.fpn_depthwise)
- self.bottom_up_layer_2 = ELANLayer(in_dim = round(512*cfg.width) + self.in_dims[0],
- out_dim = round(512*cfg.width*cfg.ratio),
- expansion = 0.5,
- num_blocks = round(3 * cfg.depth),
- shortcut = False,
- act_type = cfg.fpn_act,
- norm_type = cfg.fpn_norm,
- depthwise = cfg.fpn_depthwise,
- )
- self.init_weights()
-
- def init_weights(self):
- """Initialize the parameters."""
- for m in self.modules():
- if isinstance(m, torch.nn.Conv2d):
- # In order to be consistent with the source code,
- # reset the Conv2d initialization parameters
- m.reset_parameters()
- def forward(self, features):
- c3, c4, c5 = features
- # ------------------ Top down FPN ------------------
- ## P5 -> P4
- p5_up = F.interpolate(c5, scale_factor=2.0)
- p4 = self.top_down_layer_1(torch.cat([p5_up, c4], dim=1))
- ## P4 -> P3
- p4_up = F.interpolate(p4, scale_factor=2.0)
- p3 = self.top_down_layer_2(torch.cat([p4_up, c3], dim=1))
- # ------------------ Bottom up FPN ------------------
- ## p3 -> P4
- p3_ds = self.dowmsample_layer_1(p3)
- p4 = self.bottom_up_layer_1(torch.cat([p3_ds, p4], dim=1))
- ## P4 -> 5
- p4_ds = self.dowmsample_layer_2(p4)
- p5 = self.bottom_up_layer_2(torch.cat([p4_ds, c5], dim=1))
- out_feats = [p3, p4, p5] # [P3, P4, P5]
-
- return out_feats
-
- if __name__=='__main__':
- import time
- from thop import profile
- # Model config
-
- # YOLOv8-Base config
- class Yolov8BaseConfig(object):
- def __init__(self) -> None:
- # ---------------- Model config ----------------
- self.width = 0.50
- self.depth = 0.34
- self.ratio = 2.0
- self.out_stride = [8, 16, 32]
- self.max_stride = 32
- self.num_levels = 3
- ## FPN
- self.fpn_act = 'silu'
- self.fpn_norm = 'BN'
- self.fpn_depthwise = False
- ## Head
- self.head_dim = 256
- cfg = Yolov8BaseConfig()
- # Build a head
- in_dims = [128, 256, 512]
- fpn = Yolov8PaFPN(cfg, in_dims)
- # Inference
- x = [torch.randn(1, in_dims[0], 80, 80),
- torch.randn(1, in_dims[1], 40, 40),
- torch.randn(1, in_dims[2], 20, 20)]
- t0 = time.time()
- output = fpn(x)
- t1 = time.time()
- print('Time: ', t1 - t0)
- print('====== FPN output ====== ')
- for level, feat in enumerate(output):
- print("- Level-{} : ".format(level), feat.shape)
- flops, params = profile(fpn, inputs=(x, ), verbose=False)
- print('==============================')
- print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
- print('Params : {:.2f} M'.format(params / 1e6))
|