matcher.py 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198
  1. import torch
  2. import torch.nn as nn
  3. from utils.box_ops import bbox_iou
  4. # -------------------------- Task Aligned Assigner --------------------------
  5. class TaskAlignedAssigner(nn.Module):
  6. def __init__(self,
  7. num_classes = 80,
  8. topk_candidates = 10,
  9. alpha = 0.5,
  10. beta = 6.0,
  11. eps = 1e-9):
  12. super(TaskAlignedAssigner, self).__init__()
  13. self.topk_candidates = topk_candidates
  14. self.num_classes = num_classes
  15. self.bg_idx = num_classes
  16. self.alpha = alpha
  17. self.beta = beta
  18. self.eps = eps
  19. @torch.no_grad()
  20. def forward(self,
  21. pd_scores,
  22. pd_bboxes,
  23. anc_points,
  24. gt_labels,
  25. gt_bboxes):
  26. self.bs = pd_scores.size(0)
  27. self.n_max_boxes = gt_bboxes.size(1)
  28. mask_pos, align_metric, overlaps = self.get_pos_mask(
  29. pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points)
  30. target_gt_idx, fg_mask, mask_pos = select_highest_overlaps(
  31. mask_pos, overlaps, self.n_max_boxes)
  32. # Assigned target
  33. target_labels, target_bboxes, target_scores = self.get_targets(
  34. gt_labels, gt_bboxes, target_gt_idx, fg_mask)
  35. # normalize
  36. align_metric *= mask_pos
  37. pos_align_metrics = align_metric.amax(axis=-1, keepdim=True) # b, max_num_obj
  38. pos_overlaps = (overlaps * mask_pos).amax(axis=-1, keepdim=True) # b, max_num_obj
  39. norm_align_metric = (align_metric * pos_overlaps / (pos_align_metrics + self.eps)).amax(-2).unsqueeze(-1)
  40. target_scores = target_scores * norm_align_metric
  41. return target_labels, target_bboxes, target_scores, fg_mask.bool(), target_gt_idx
  42. def get_pos_mask(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points):
  43. # get in_gts mask, (b, max_num_obj, h*w)
  44. mask_in_gts = select_candidates_in_gts(anc_points, gt_bboxes)
  45. # get anchor_align metric, (b, max_num_obj, h*w)
  46. align_metric, overlaps = self.get_box_metrics(pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_in_gts)
  47. # get topk_metric mask, (b, max_num_obj, h*w)
  48. mask_topk = self.select_topk_candidates(align_metric)
  49. # merge all mask to a final mask, (b, max_num_obj, h*w)
  50. mask_pos = mask_topk * mask_in_gts
  51. return mask_pos, align_metric, overlaps
  52. def get_box_metrics(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_in_gts):
  53. """Compute alignment metric given predicted and ground truth bounding boxes."""
  54. na = pd_bboxes.shape[-2]
  55. mask_in_gts = mask_in_gts.bool() # b, max_num_obj, h*w
  56. overlaps = torch.zeros([self.bs, self.n_max_boxes, na], dtype=pd_bboxes.dtype, device=pd_bboxes.device)
  57. bbox_scores = torch.zeros([self.bs, self.n_max_boxes, na], dtype=pd_scores.dtype, device=pd_scores.device)
  58. ind = torch.zeros([2, self.bs, self.n_max_boxes], dtype=torch.long) # 2, b, max_num_obj
  59. ind[0] = torch.arange(end=self.bs).view(-1, 1).expand(-1, self.n_max_boxes) # b, max_num_obj
  60. ind[1] = gt_labels.squeeze(-1) # b, max_num_obj
  61. # Get the scores of each grid for each gt cls
  62. bbox_scores[mask_in_gts] = pd_scores[ind[0], :, ind[1]][mask_in_gts] # b, max_num_obj, h*w
  63. # (b, max_num_obj, 1, 4), (b, 1, h*w, 4)
  64. pd_boxes = pd_bboxes.unsqueeze(1).expand(-1, self.n_max_boxes, -1, -1)[mask_in_gts]
  65. gt_boxes = gt_bboxes.unsqueeze(2).expand(-1, -1, na, -1)[mask_in_gts]
  66. overlaps[mask_in_gts] = bbox_iou(gt_boxes, pd_boxes, xywh=False, CIoU=True).squeeze(-1).clamp_(0)
  67. align_metric = bbox_scores.pow(self.alpha) * overlaps.pow(self.beta)
  68. return align_metric, overlaps
  69. def select_topk_candidates(self, metrics, largest=True):
  70. """
  71. Args:
  72. metrics: (b, max_num_obj, h*w).
  73. topk_mask: (b, max_num_obj, topk) or None
  74. """
  75. # (b, max_num_obj, topk)
  76. topk_metrics, topk_idxs = torch.topk(metrics, self.topk_candidates, dim=-1, largest=largest)
  77. topk_mask = (topk_metrics.max(-1, keepdim=True)[0] > self.eps).expand_as(topk_idxs)
  78. # (b, max_num_obj, topk)
  79. topk_idxs.masked_fill_(~topk_mask, 0)
  80. # (b, max_num_obj, topk, h*w) -> (b, max_num_obj, h*w)
  81. count_tensor = torch.zeros(metrics.shape, dtype=torch.int8, device=topk_idxs.device)
  82. ones = torch.ones_like(topk_idxs[:, :, :1], dtype=torch.int8, device=topk_idxs.device)
  83. for k in range(self.topk_candidates):
  84. # Expand topk_idxs for each value of k and add 1 at the specified positions
  85. count_tensor.scatter_add_(-1, topk_idxs[:, :, k:k + 1], ones)
  86. # count_tensor.scatter_add_(-1, topk_idxs, torch.ones_like(topk_idxs, dtype=torch.int8, device=topk_idxs.device))
  87. # Filter invalid bboxes
  88. count_tensor.masked_fill_(count_tensor > 1, 0)
  89. return count_tensor.to(metrics.dtype)
  90. def get_targets(self, gt_labels, gt_bboxes, target_gt_idx, fg_mask):
  91. # Assigned target labels, (b, 1)
  92. batch_ind = torch.arange(end=self.bs, dtype=torch.int64, device=gt_labels.device)[..., None]
  93. target_gt_idx = target_gt_idx + batch_ind * self.n_max_boxes # (b, h*w)
  94. target_labels = gt_labels.long().flatten()[target_gt_idx] # (b, h*w)
  95. # Assigned target boxes, (b, max_num_obj, 4) -> (b, h*w, 4)
  96. target_bboxes = gt_bboxes.view(-1, 4)[target_gt_idx]
  97. # Assigned target scores
  98. target_labels.clamp_(0)
  99. # 10x faster than F.one_hot()
  100. target_scores = torch.zeros((target_labels.shape[0], target_labels.shape[1], self.num_classes),
  101. dtype=torch.int64,
  102. device=target_labels.device) # (b, h*w, 80)
  103. target_scores.scatter_(2, target_labels.unsqueeze(-1), 1)
  104. fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.num_classes) # (b, h*w, 80)
  105. target_scores = torch.where(fg_scores_mask > 0, target_scores, 0)
  106. return target_labels, target_bboxes, target_scores
  107. # -------------------------- Basic Functions --------------------------
  108. def select_candidates_in_gts(xy_centers, gt_bboxes, eps=1e-9):
  109. """select the positive anchors's center in gt
  110. Args:
  111. xy_centers (Tensor): shape(bs*n_max_boxes, num_total_anchors, 4)
  112. gt_bboxes (Tensor): shape(bs, n_max_boxes, 4)
  113. Return:
  114. (Tensor): shape(bs, n_max_boxes, num_total_anchors)
  115. """
  116. n_anchors = xy_centers.size(0)
  117. bs, n_max_boxes, _ = gt_bboxes.size()
  118. _gt_bboxes = gt_bboxes.reshape([-1, 4])
  119. xy_centers = xy_centers.unsqueeze(0).repeat(bs * n_max_boxes, 1, 1)
  120. gt_bboxes_lt = _gt_bboxes[:, 0:2].unsqueeze(1).repeat(1, n_anchors, 1)
  121. gt_bboxes_rb = _gt_bboxes[:, 2:4].unsqueeze(1).repeat(1, n_anchors, 1)
  122. b_lt = xy_centers - gt_bboxes_lt
  123. b_rb = gt_bboxes_rb - xy_centers
  124. bbox_deltas = torch.cat([b_lt, b_rb], dim=-1)
  125. bbox_deltas = bbox_deltas.reshape([bs, n_max_boxes, n_anchors, -1])
  126. return (bbox_deltas.min(axis=-1)[0] > eps).to(gt_bboxes.dtype)
  127. def select_highest_overlaps(mask_pos, overlaps, n_max_boxes):
  128. """if an anchor box is assigned to multiple gts,
  129. the one with the highest iou will be selected.
  130. Args:
  131. mask_pos (Tensor): shape(bs, n_max_boxes, num_total_anchors)
  132. overlaps (Tensor): shape(bs, n_max_boxes, num_total_anchors)
  133. Return:
  134. target_gt_idx (Tensor): shape(bs, num_total_anchors)
  135. fg_mask (Tensor): shape(bs, num_total_anchors)
  136. mask_pos (Tensor): shape(bs, n_max_boxes, num_total_anchors)
  137. """
  138. fg_mask = mask_pos.sum(-2)
  139. if fg_mask.max() > 1: # one anchor is assigned to multiple gt_bboxes
  140. mask_multi_gts = (fg_mask.unsqueeze(1) > 1).expand(-1, n_max_boxes, -1) # (b, n_max_boxes, h*w)
  141. max_overlaps_idx = overlaps.argmax(1) # (b, h*w)
  142. is_max_overlaps = torch.zeros(mask_pos.shape, dtype=mask_pos.dtype, device=mask_pos.device)
  143. is_max_overlaps.scatter_(1, max_overlaps_idx.unsqueeze(1), 1)
  144. mask_pos = torch.where(mask_multi_gts, is_max_overlaps, mask_pos).float() # (b, n_max_boxes, h*w)
  145. fg_mask = mask_pos.sum(-2)
  146. # Find each grid serve which gt(index)
  147. target_gt_idx = mask_pos.argmax(-2) # (b, h*w)
  148. return target_gt_idx, fg_mask, mask_pos
  149. def iou_calculator(box1, box2, eps=1e-9):
  150. """Calculate iou for batch
  151. Args:
  152. box1 (Tensor): shape(bs, n_max_boxes, 1, 4)
  153. box2 (Tensor): shape(bs, 1, num_total_anchors, 4)
  154. Return:
  155. (Tensor): shape(bs, n_max_boxes, num_total_anchors)
  156. """
  157. box1 = box1.unsqueeze(2) # [N, M1, 4] -> [N, M1, 1, 4]
  158. box2 = box2.unsqueeze(1) # [N, M2, 4] -> [N, 1, M2, 4]
  159. px1y1, px2y2 = box1[:, :, :, 0:2], box1[:, :, :, 2:4]
  160. gx1y1, gx2y2 = box2[:, :, :, 0:2], box2[:, :, :, 2:4]
  161. x1y1 = torch.maximum(px1y1, gx1y1)
  162. x2y2 = torch.minimum(px2y2, gx2y2)
  163. overlap = (x2y2 - x1y1).clip(0).prod(-1)
  164. area1 = (px2y2 - px1y1).clip(0).prod(-1)
  165. area2 = (gx2y2 - gx1y1).clip(0).prod(-1)
  166. union = area1 + area2 - overlap + eps
  167. return overlap / union