| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121 |
- import torch
- import torch.nn as nn
- try:
- from .yolov2_basic import BasicConv
- except:
- from yolov2_basic import BasicConv
- class Yolov2DetHead(nn.Module):
- def __init__(self, cfg, in_dim: int = 256):
- super().__init__()
- # --------- Basic Parameters ----------
- self.in_dim = in_dim
- self.cls_head_dim = cfg.head_dim
- self.reg_head_dim = cfg.head_dim
- self.num_cls_head = cfg.num_cls_head
- self.num_reg_head = cfg.num_reg_head
- self.act_type = cfg.head_act
- self.norm_type = cfg.head_norm
- self.depthwise = cfg.head_depthwise
-
- # --------- Network Parameters ----------
- ## cls head
- cls_feats = []
- for i in range(self.num_cls_head):
- if i == 0:
- cls_feats.append(
- BasicConv(in_dim, self.cls_head_dim,
- kernel_size=3, padding=1, stride=1,
- act_type = self.act_type,
- norm_type = self.norm_type,
- depthwise = self.depthwise)
- )
- else:
- cls_feats.append(
- BasicConv(self.cls_head_dim, self.cls_head_dim,
- kernel_size=3, padding=1, stride=1,
- act_type = self.act_type,
- norm_type = self.norm_type,
- depthwise = self.depthwise)
- )
- ## reg head
- reg_feats = []
- for i in range(self.num_reg_head):
- if i == 0:
- reg_feats.append(
- BasicConv(in_dim, self.reg_head_dim,
- kernel_size=3, padding=1, stride=1,
- act_type = self.act_type,
- norm_type = self.norm_type,
- depthwise = self.depthwise)
- )
- else:
- reg_feats.append(
- BasicConv(self.reg_head_dim, self.reg_head_dim,
- kernel_size=3, padding=1, stride=1,
- act_type = self.act_type,
- norm_type = self.norm_type,
- depthwise = self.depthwise)
- )
- self.cls_feats = nn.Sequential(*cls_feats)
- self.reg_feats = nn.Sequential(*reg_feats)
- self.init_weights()
-
- def init_weights(self):
- """Initialize the parameters."""
- for m in self.modules():
- if isinstance(m, torch.nn.Conv2d):
- # In order to be consistent with the source code,
- # reset the Conv2d initialization parameters
- m.reset_parameters()
- def forward(self, x):
- """
- in_feats: (Tensor) [B, C, H, W]
- """
- cls_feats = self.cls_feats(x)
- reg_feats = self.reg_feats(x)
- return cls_feats, reg_feats
- if __name__=='__main__':
- import time
- from thop import profile
- # Model config
-
- # YOLOv8-Base config
- class Yolov2BaseConfig(object):
- def __init__(self) -> None:
- # ---------------- Model config ----------------
- self.out_stride = 32
- self.max_stride = 32
- ## Head
- self.head_act = 'lrelu'
- self.head_norm = 'BN'
- self.head_depthwise = False
- self.head_dim = 256
- self.num_cls_head = 2
- self.num_reg_head = 2
- cfg = Yolov2BaseConfig()
- # Build a head
- head = Yolov2DetHead(cfg, 512)
- # Inference
- x = torch.randn(1, 512, 20, 20)
- t0 = time.time()
- cls_feat, reg_feat = head(x)
- t1 = time.time()
- print('Time: ', t1 - t0)
- print(cls_feat.shape, reg_feat.shape)
- print('==============================')
- flops, params = profile(head, inputs=(x, ), verbose=False)
- print('==============================')
- print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
- print('Params : {:.2f} M'.format(params / 1e6))
|