| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217 |
- from __future__ import division
- import os
- import random
- import numpy as np
- import argparse
- from copy import deepcopy
- # ----------------- Torch Components -----------------
- import torch
- import torch.distributed as dist
- from torch.nn.parallel import DistributedDataParallel as DDP
- # ----------------- Extra Components -----------------
- from utils import distributed_utils
- from utils.misc import compute_flops, build_dataloader, CollateFunc
- from utils.ema import ModelEMA
- # ----------------- Config Components -----------------
- from config import build_config
- # ----------------- Data Components -----------------
- from dataset.build import build_dataset, build_transform
- # ----------------- Evaluator Components -----------------
- from evaluator.map_evaluator import MapEvaluator
- # ----------------- Model Components -----------------
- from models import build_model
- # ----------------- Train Components -----------------
- from engine import build_trainer
- def parse_args():
- parser = argparse.ArgumentParser(description='Real-time Object Detection LAB')
- # Random seed
- parser.add_argument('--seed', default=42, type=int)
- # GPU
- parser.add_argument('--cuda', action='store_true', default=False,
- help='use cuda.')
-
- # Image size
- parser.add_argument('--eval_first', action='store_true', default=False,
- help='evaluate model before training.')
-
- # Outputs
- parser.add_argument('--tfboard', action='store_true', default=False,
- help='use tensorboard')
- parser.add_argument('--save_folder', default='weights/', type=str,
- help='path to save weight')
- parser.add_argument('--vis_tgt', action="store_true", default=False,
- help="visualize training data.")
- parser.add_argument('--vis_aux_loss', action="store_true", default=False,
- help="visualize aux loss.")
-
- # Mixing precision
- parser.add_argument('--fp16', dest="fp16", action="store_true", default=False,
- help="Adopting mix precision training.")
-
- # Batchsize
- parser.add_argument('--batch_size', default=16, type=int,
- help='batch size on all the GPUs.')
- # Model
- parser.add_argument('--model', default='yolo_n', type=str,
- help='build yolo')
- parser.add_argument('--pretrained', default=None, type=str,
- help='load pretrained weight')
- parser.add_argument('--resume', default=None, type=str,
- help='keep training')
- # Dataset
- parser.add_argument('--root', default='D:/python_work/dataset/VOCdevkit/',
- help='data root')
- parser.add_argument('--dataset', default='voc',
- help='coco, voc')
- parser.add_argument('--num_workers', default=4, type=int,
- help='Number of workers used in dataloading')
-
- # DDP train
- parser.add_argument('--distributed', action='store_true', default=False,
- help='distributed training')
- parser.add_argument('--dist_url', default='env://',
- help='url used to set up distributed training')
- parser.add_argument('--world_size', default=1, type=int,
- help='number of distributed processes')
- parser.add_argument('--sybn', action='store_true', default=False,
- help='use sybn.')
- parser.add_argument('--find_unused_parameters', action='store_true', default=False,
- help='set find_unused_parameters as True.')
-
- # Debug mode
- parser.add_argument('--debug', action='store_true', default=False,
- help='debug mode.')
- return parser.parse_args()
- def fix_random_seed(args):
- seed = args.seed + distributed_utils.get_rank()
- torch.manual_seed(seed)
- np.random.seed(seed)
- random.seed(seed)
- def train():
- args = parse_args()
- print("Setting Arguments.. : ", args)
- print("----------------------------------------------------------")
- # ---------------------------- Build DDP ----------------------------
- local_rank = local_process_rank = -1
- if args.distributed:
- distributed_utils.init_distributed_mode(args)
- print("git:\n {}\n".format(distributed_utils.get_sha()))
- try:
- # Multiple Mechine & Multiple GPUs (world size > 8)
- local_rank = torch.distributed.get_rank()
- local_process_rank = int(os.getenv('LOCAL_PROCESS_RANK', '0'))
- except:
- # Single Mechine & Multiple GPUs (world size <= 8)
- local_rank = local_process_rank = torch.distributed.get_rank()
- world_size = distributed_utils.get_world_size()
- print("LOCAL RANK: ", local_rank)
- print("LOCAL_PROCESS_RANL: ", local_process_rank)
- print('WORLD SIZE: {}'.format(world_size))
- # ---------------------------- Build CUDA ----------------------------
- if args.cuda and torch.cuda.is_available():
- print('use cuda')
- device = torch.device("cuda")
- else:
- device = torch.device("cpu")
- # ---------------------------- Fix random seed ----------------------------
- fix_random_seed(args)
- # ---------------------------- Build config ----------------------------
- cfg = build_config(args)
- # ---------------------------- Build Transform ----------------------------
- train_transform = build_transform(cfg, is_train=True)
- val_transform = build_transform(cfg, is_train=False)
- # ---------------------------- Build Dataset & Dataloader ----------------------------
- dataset = build_dataset(args, cfg, train_transform, is_train=True)
- train_loader = build_dataloader(args, dataset, args.batch_size // world_size, CollateFunc())
- # ---------------------------- Build Evaluator ----------------------------
- evaluator = MapEvaluator(cfg = cfg,
- dataset_name = args.dataset,
- data_dir = args.root,
- device = device,
- transform = val_transform
- )
- # ---------------------------- Build model ----------------------------
- ## Build model
- model, criterion = build_model(args, cfg, is_val=True)
- model = model.to(device).train()
- model_without_ddp = model
- # ---------------------------- Build Model-EMA ----------------------------
- if cfg.use_ema and distributed_utils.get_rank() in [-1, 0]:
- print('Build ModelEMA for {} ...'.format(args.model))
- model_ema = ModelEMA(model, cfg.ema_decay, cfg.ema_tau, args.resume)
- else:
- model_ema = None
- ## Calcute Params & GFLOPs
- if distributed_utils.is_main_process:
- model_copy = deepcopy(model_without_ddp)
- model_copy.trainable = False
- model_copy.eval()
- compute_flops(model=model_copy,
- img_size=cfg.test_img_size,
- device=device)
- del model_copy
- if args.distributed:
- dist.barrier()
- ## Build DDP model
- if args.distributed:
- model = DDP(model, device_ids=[args.gpu], find_unused_parameters=args.find_unused_parameters)
- if args.sybn:
- print('use SyncBatchNorm ...')
- model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
- model_without_ddp = model.module
- if args.distributed:
- dist.barrier()
- # ---------------------------- Build Trainer ----------------------------
- trainer = build_trainer(args, cfg, device, model, model_ema, criterion, train_transform, val_transform, dataset, train_loader, evaluator)
- ## Eval before training
- if args.eval_first and distributed_utils.is_main_process():
- # to check whether the evaluator can work
- model_eval = model_without_ddp
- trainer.eval(model_eval)
- return
- # garbage = torch.randn(640, 1024, 73, 73).to(device) # 15 G
- # ---------------------------- Train pipeline ----------------------------
- trainer.train(model)
- # Empty cache after train loop
- del trainer
- del garbage
- if args.cuda:
- torch.cuda.empty_cache()
- if __name__ == '__main__':
- train()
|