| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246 |
- import math
- import copy
- import warnings
- from typing import List
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from ..basic.mlp import FFN, MLP
- from ..basic.conv import LayerNorm2D, BasicConv
- # ----------------- Basic Ops -----------------
- def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
- """Copy from timm"""
- with torch.no_grad():
- """Copy from timm"""
- def norm_cdf(x):
- return (1. + math.erf(x / math.sqrt(2.))) / 2.
- if (mean < a - 2 * std) or (mean > b + 2 * std):
- warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
- "The distribution of values may be incorrect.",
- stacklevel=2)
- l = norm_cdf((a - mean) / std)
- u = norm_cdf((b - mean) / std)
- tensor.uniform_(2 * l - 1, 2 * u - 1)
- tensor.erfinv_()
- tensor.mul_(std * math.sqrt(2.))
- tensor.add_(mean)
- tensor.clamp_(min=a, max=b)
- return tensor
-
- def get_clones(module, N):
- if N <= 0:
- return None
- else:
- return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
- def inverse_sigmoid(x, eps=1e-5):
- x = x.clamp(min=0., max=1.)
- return torch.log(x.clamp(min=eps) / (1 - x).clamp(min=eps))
- def build_transformer(cfg, num_classes=80, return_intermediate=False):
- if cfg['transformer'] == 'plain_detr_transformer':
- return PlainDETRTransformer(d_model = cfg['hidden_dim'],
- num_heads = cfg['de_num_heads'],
- ffn_dim = cfg['de_ffn_dim'],
- dropout = cfg['de_dropout'],
- act_type = cfg['de_act'],
- pre_norm = cfg['de_pre_norm'],
- rpe_hidden_dim = cfg['rpe_hidden_dim'],
- feature_stride = cfg['out_stride'],
- num_layers = cfg['de_num_layers'],
- return_intermediate = return_intermediate,
- use_checkpoint = cfg['use_checkpoint'],
- num_queries_one2one = cfg['num_queries_one2one'],
- num_queries_one2many = cfg['num_queries_one2many'],
- proposal_feature_levels = cfg['proposal_feature_levels'],
- proposal_in_stride = cfg['out_stride'],
- proposal_tgt_strides = cfg['proposal_tgt_strides'],
- )
- elif cfg['transformer'] == 'rtdetr_transformer':
- return RTDETRTransformer(in_dims = cfg['backbone_feat_dims'],
- hidden_dim = cfg['hidden_dim'],
- strides = cfg['out_stride'],
- num_classes = num_classes,
- num_queries = cfg['num_queries'],
- num_heads = cfg['de_num_heads'],
- num_layers = cfg['de_num_layers'],
- num_levels = 3,
- num_points = cfg['de_num_points'],
- ffn_dim = cfg['de_ffn_dim'],
- dropout = cfg['de_dropout'],
- act_type = cfg['de_act'],
- pre_norm = cfg['de_pre_norm'],
- return_intermediate = return_intermediate,
- num_denoising = cfg['dn_num_denoising'],
- label_noise_ratio = cfg['dn_label_noise_ratio'],
- box_noise_scale = cfg['dn_box_noise_scale'],
- learnt_init_query = cfg['learnt_init_query'],
- )
- # ----------------- Transformer Encoder -----------------
- class TransformerEncoderLayer(nn.Module):
- def __init__(self,
- d_model :int = 256,
- num_heads :int = 8,
- ffn_dim :int = 1024,
- dropout :float = 0.1,
- act_type :str = "relu",
- pre_norm :bool = False,
- ):
- super().__init__()
- # ----------- Basic parameters -----------
- self.d_model = d_model
- self.num_heads = num_heads
- self.ffn_dim = ffn_dim
- self.dropout = dropout
- self.act_type = act_type
- self.pre_norm = pre_norm
- # ----------- Basic parameters -----------
- # Multi-head Self-Attn
- self.self_attn = nn.MultiheadAttention(d_model, num_heads, dropout=dropout, batch_first=True)
- self.dropout = nn.Dropout(dropout)
- self.norm = nn.LayerNorm(d_model)
- # Feedforwaed Network
- self.ffn = FFN(d_model, ffn_dim, dropout, act_type)
- def with_pos_embed(self, tensor, pos):
- return tensor if pos is None else tensor + pos
- def forward_pre_norm(self, src, pos_embed):
- """
- Input:
- src: [torch.Tensor] -> [B, N, C]
- pos_embed: [torch.Tensor] -> [B, N, C]
- Output:
- src: [torch.Tensor] -> [B, N, C]
- """
- src = self.norm(src)
- q = k = self.with_pos_embed(src, pos_embed)
- # -------------- MHSA --------------
- src2 = self.self_attn(q, k, value=src)[0]
- src = src + self.dropout(src2)
- # -------------- FFN --------------
- src = self.ffn(src)
-
- return src
- def forward_post_norm(self, src, pos_embed):
- """
- Input:
- src: [torch.Tensor] -> [B, N, C]
- pos_embed: [torch.Tensor] -> [B, N, C]
- Output:
- src: [torch.Tensor] -> [B, N, C]
- """
- q = k = self.with_pos_embed(src, pos_embed)
- # -------------- MHSA --------------
- src2 = self.self_attn(q, k, value=src)[0]
- src = src + self.dropout(src2)
- src = self.norm(src)
- # -------------- FFN --------------
- src = self.ffn(src)
-
- return src
- def forward(self, src, pos_embed):
- if self.pre_norm:
- return self.forward_pre_norm(src, pos_embed)
- else:
- return self.forward_post_norm(src, pos_embed)
- class TransformerEncoder(nn.Module):
- def __init__(self,
- d_model :int = 256,
- num_heads :int = 8,
- num_layers :int = 1,
- ffn_dim :int = 1024,
- pe_temperature :float = 10000.,
- dropout :float = 0.1,
- act_type :str = "relu",
- pre_norm :bool = False,
- ):
- super().__init__()
- # ----------- Basic parameters -----------
- self.d_model = d_model
- self.num_heads = num_heads
- self.num_layers = num_layers
- self.ffn_dim = ffn_dim
- self.dropout = dropout
- self.act_type = act_type
- self.pre_norm = pre_norm
- self.pe_temperature = pe_temperature
- self.pos_embed = None
- # ----------- Basic parameters -----------
- self.encoder_layers = get_clones(
- TransformerEncoderLayer(d_model, num_heads, ffn_dim, dropout, act_type, pre_norm), num_layers)
- def build_2d_sincos_position_embedding(self, device, w, h, embed_dim=256, temperature=10000.):
- assert embed_dim % 4 == 0, \
- 'Embed dimension must be divisible by 4 for 2D sin-cos position embedding'
-
- # ----------- Check cahed pos_embed -----------
- if self.pos_embed is not None and \
- self.pos_embed.shape[2:] == [h, w]:
- return self.pos_embed
-
- # ----------- Generate grid coords -----------
- grid_w = torch.arange(int(w), dtype=torch.float32)
- grid_h = torch.arange(int(h), dtype=torch.float32)
- grid_w, grid_h = torch.meshgrid([grid_w, grid_h]) # shape: [H, W]
- pos_dim = embed_dim // 4
- omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
- omega = 1. / (temperature**omega)
- out_w = grid_w.flatten()[..., None] @ omega[None] # shape: [N, C]
- out_h = grid_h.flatten()[..., None] @ omega[None] # shape: [N, C]
- # shape: [1, N, C]
- pos_embed = torch.cat([torch.sin(out_w), torch.cos(out_w), torch.sin(out_h),torch.cos(out_h)], dim=1)[None, :, :]
- pos_embed = pos_embed.to(device)
- self.pos_embed = pos_embed
- return pos_embed
- def forward(self, src):
- """
- Input:
- src: [torch.Tensor] -> [B, C, H, W]
- Output:
- src: [torch.Tensor] -> [B, C, H, W]
- """
- # -------- Transformer encoder --------
- channels, fmp_h, fmp_w = src.shape[1:]
- # [B, C, H, W] -> [B, N, C], N=HxW
- src_flatten = src.flatten(2).permute(0, 2, 1).contiguous()
- memory = src_flatten
- # PosEmbed: [1, N, C]
- pos_embed = self.build_2d_sincos_position_embedding(
- src.device, fmp_w, fmp_h, channels, self.pe_temperature)
-
- # Transformer Encoder layer
- for encoder in self.encoder_layers:
- memory = encoder(memory, pos_embed=pos_embed)
- # Output: [B, N, C] -> [B, C, N] -> [B, C, H, W]
- src = memory.permute(0, 2, 1).contiguous()
- src = src.view([-1, channels, fmp_h, fmp_w])
- return src
|