| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185 |
- import math
- import torch
- import torch.nn as nn
- from ..basic.conv import ConvModule
- class YolofHead(nn.Module):
- def __init__(self, cfg, in_dim, out_dim, num_classes, num_cls_head=1, num_reg_head=1, act_type='relu', norm_type='BN'):
- super().__init__()
- self.fmp_size = None
- self.ctr_clamp = cfg['center_clamp']
- self.DEFAULT_EXP_CLAMP = math.log(1e8)
- self.DEFAULT_SCALE_CLAMP = math.log(1000.0 / 16)
- # ------------------ Basic parameters -------------------
- self.cfg = cfg
- self.in_dim = in_dim
- self.num_classes = num_classes
- self.num_cls_head=num_cls_head
- self.num_reg_head=num_reg_head
- self.act_type=act_type
- self.norm_type=norm_type
- self.stride = cfg['out_stride']
- # Anchor config
- self.anchor_size = torch.as_tensor(cfg['anchor_size'])
- self.num_anchors = len(cfg['anchor_size'])
- # ------------------ Network parameters -------------------
- ## cls head
- cls_heads = []
- self.cls_head_dim = out_dim
- for i in range(self.num_cls_head):
- if i == 0:
- cls_heads.append(
- ConvModule(in_dim, self.cls_head_dim, k=3, p=1, s=1,
- act_type=self.act_type,
- norm_type=self.norm_type)
- )
- else:
- cls_heads.append(
- ConvModule(self.cls_head_dim, self.cls_head_dim, k=3, p=1, s=1,
- act_type=self.act_type,
- norm_type=self.norm_type)
- )
- ## reg head
- reg_heads = []
- self.reg_head_dim = out_dim
- for i in range(self.num_reg_head):
- if i == 0:
- reg_heads.append(
- ConvModule(in_dim, self.reg_head_dim, k=3, p=1, s=1,
- act_type=self.act_type,
- norm_type=self.norm_type)
- )
- else:
- reg_heads.append(
- ConvModule(self.reg_head_dim, self.reg_head_dim, k=3, p=1, s=1,
- act_type=self.act_type,
- norm_type=self.norm_type)
- )
- self.cls_heads = nn.Sequential(*cls_heads)
- self.reg_heads = nn.Sequential(*reg_heads)
- # pred layer
- self.obj_pred = nn.Conv2d(self.reg_head_dim, 1 * self.num_anchors, kernel_size=3, padding=1)
- self.cls_pred = nn.Conv2d(self.cls_head_dim, num_classes * self.num_anchors, kernel_size=3, padding=1)
- self.reg_pred = nn.Conv2d(self.reg_head_dim, 4 * self.num_anchors, kernel_size=3, padding=1)
- # init bias
- self._init_pred_layers()
- def _init_pred_layers(self):
- # init cls pred
- nn.init.normal_(self.cls_pred.weight, mean=0, std=0.01)
- init_prob = 0.01
- bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
- nn.init.constant_(self.cls_pred.bias, bias_value)
- # init reg pred
- nn.init.normal_(self.reg_pred.weight, mean=0, std=0.01)
- nn.init.constant_(self.reg_pred.bias, 0.0)
- # init obj pred
- nn.init.normal_(self.obj_pred.weight, mean=0, std=0.01)
- nn.init.constant_(self.obj_pred.bias, 0.0)
- def get_anchors(self, fmp_size):
- """fmp_size: list -> [H, W] \n
- stride: int -> output stride
- """
- # check anchor boxes
- if self.fmp_size is not None and self.fmp_size == fmp_size:
- return self.anchor_boxes
- else:
- # generate grid cells
- fmp_h, fmp_w = fmp_size
- anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
- # [H, W, 2] -> [HW, 2]
- anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2) + 0.5
- # [HW, 2] -> [HW, 1, 2] -> [HW, KA, 2]
- anchor_xy = anchor_xy[:, None, :].repeat(1, self.num_anchors, 1)
- anchor_xy *= self.stride
- # [KA, 2] -> [1, KA, 2] -> [HW, KA, 2]
- anchor_wh = self.anchor_size[None, :, :].repeat(fmp_h*fmp_w, 1, 1)
- # [HW, KA, 4] -> [M, 4]
- anchor_boxes = torch.cat([anchor_xy, anchor_wh], dim=-1)
- anchor_boxes = anchor_boxes.view(-1, 4)
- self.anchor_boxes = anchor_boxes
- self.fmp_size = fmp_size
- return anchor_boxes
-
- def decode_boxes(self, anchor_boxes, pred_reg):
- """
- anchor_boxes: (List[tensor]) [1, M, 4]
- pred_reg: (List[tensor]) [B, M, 4]
- """
- # x = x_anchor + dx * w_anchor
- # y = y_anchor + dy * h_anchor
- pred_ctr_offset = pred_reg[..., :2] * anchor_boxes[..., 2:]
- pred_ctr_offset = torch.clamp(pred_ctr_offset, min=-self.ctr_clamp, max=self.ctr_clamp)
- pred_ctr_xy = anchor_boxes[..., :2] + pred_ctr_offset
- # w = w_anchor * exp(tw)
- # h = h_anchor * exp(th)
- pred_dwdh = pred_reg[..., 2:]
- pred_dwdh = torch.clamp(pred_dwdh, max=self.DEFAULT_SCALE_CLAMP)
- pred_wh = anchor_boxes[..., 2:] * pred_dwdh.exp()
- # convert [x, y, w, h] -> [x1, y1, x2, y2]
- pred_x1y1 = pred_ctr_xy - 0.5 * pred_wh
- pred_x2y2 = pred_ctr_xy + 0.5 * pred_wh
- pred_box = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
- return pred_box
- def forward(self, x, mask=None):
- # ------------------- Decoupled head -------------------
- cls_feats = self.cls_heads(x)
- reg_feats = self.reg_heads(x)
- # ------------------- Generate anchor box -------------------
- fmp_size = cls_feats.shape[2:]
- anchor_boxes = self.get_anchors(fmp_size) # [M, 4]
- anchor_boxes = anchor_boxes.to(cls_feats.device)
- # ------------------- Predict -------------------
- obj_pred = self.obj_pred(reg_feats)
- cls_pred = self.cls_pred(cls_feats)
- reg_pred = self.reg_pred(reg_feats)
- # ------------------- Precoess preds -------------------
- ## implicit objectness
- B, _, H, W = obj_pred.size()
- obj_pred = obj_pred.view(B, -1, 1, H, W)
- cls_pred = cls_pred.view(B, -1, self.num_classes, H, W)
- normalized_cls_pred = cls_pred + obj_pred - torch.log(
- 1. +
- torch.clamp(cls_pred, max=self.DEFAULT_EXP_CLAMP).exp() +
- torch.clamp(obj_pred, max=self.DEFAULT_EXP_CLAMP).exp())
- # [B, KA, C, H, W] -> [B, H, W, KA, C] -> [B, M, C], M = HxWxKA
- normalized_cls_pred = normalized_cls_pred.permute(0, 3, 4, 1, 2).contiguous()
- normalized_cls_pred = normalized_cls_pred.view(B, -1, self.num_classes)
- # [B, KA*4, H, W] -> [B, KA, 4, H, W] -> [B, H, W, KA, 4] -> [B, M, 4]
- reg_pred = reg_pred.view(B, -1, 4, H, W).permute(0, 3, 4, 1, 2).contiguous()
- reg_pred = reg_pred.view(B, -1, 4)
- ## Decode bbox
- box_pred = self.decode_boxes(anchor_boxes[None], reg_pred) # [B, M, 4]
- ## adjust mask
- if mask is not None:
- # [B, H, W]
- mask = torch.nn.functional.interpolate(mask[None].float(), size=fmp_size).bool()[0]
- # [B, H, W] -> [B, HW]
- mask = mask.flatten(1)
- # [B, HW] -> [B, HW, KA] -> [BM,], M= HW x KA
- mask = mask[..., None].repeat(1, 1, self.num_anchors).flatten()
- outputs = {"pred_cls": normalized_cls_pred,
- "pred_reg": reg_pred,
- "pred_box": box_pred,
- "anchors": anchor_boxes,
- "mask": mask}
- return outputs
|