yjh0410 264112178f build a new YOLO-Tutorial project for my book 1 rok temu
..
README.md 264112178f build a new YOLO-Tutorial project for my book 1 rok temu
build.py 264112178f build a new YOLO-Tutorial project for my book 1 rok temu
criterion.py 264112178f build a new YOLO-Tutorial project for my book 1 rok temu
detr.py 264112178f build a new YOLO-Tutorial project for my book 1 rok temu
matcher.py 264112178f build a new YOLO-Tutorial project for my book 1 rok temu

README.md

PlainDETR

Our PlainDETR-R50-1x baseline on COCO-val:

Results on COCO

  • We explore whether PlainDETR can still be powerful when using ResNet as the backbone.
  • We set up two comparative experiments, using the ResNet-50 pre-trained for the IN1K classification task and the ResNet-50 pre-trained by IN1K's MIM as the backbone of PlainDETR. Among them, we used the MIM pre-trained ResNet-50 provided by SparK.

Train PlainDETR

Single GPU

Taking training PlainDETR on COCO as the example,

python main.py --cuda -d coco --root path/to/coco -m plain_detr_r50 --batch_size 16 --eval_epoch 2

Multi GPU

Taking training PlainDETR on COCO as the example,

python -m torch.distributed.run --nproc_per_node=8 train.py --cuda -dist -d coco --root path/to/coco -m plain_detr_r50 --batch_size 16 --eval_epoch 2 

Test PlainDETR

Taking testing PlainDETR on COCO-val as the example,

python test.py --cuda -d coco --root path/to/coco -m plain_detr_r50 --weight path/to/plain_detr_r50.pth -vt 0.4 --show 

Evaluate PlainDETR

Taking evaluating PlainDETR on COCO-val as the example,

python main.py --cuda -d coco --root path/to/coco -m plain_detr_r50 --resume path/to/plain_detr_r50.pth --eval_first

Demo

Detect with Image

python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m plain_detr_r50 --weight path/to/weight -vt 0.4 --show

Detect with Video

python demo.py --mode video --path_to_vid path/to/video --cuda -m plain_detr_r50 --weight path/to/weight -vt 0.4 --show --gif

Detect with Camera

python demo.py --mode camera --cuda -m plain_detr_r50 --weight path/to/weight -vt 0.4 --show --gif
Model Scale Pretrained FPS APval
0.5:0.95
APval
0.5
Weight Logs
PlainDETR-R50 800,1333 IN1K-Cls
PlainDETR-R50 800,1333 IN1K-MIM