| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347 |
- import math
- import torch
- import torch.nn as nn
- from ...backbone import build_backbone
- from ...basic.mlp import MLP
- from ...basic.conv import BasicConv, UpSampleWrapper
- from ...basic.transformer import TransformerEncoder, PlainDETRTransformer, get_clones
- from utils.misc import multiclass_nms
- # DETR
- class DETR(nn.Module):
- def __init__(self,
- cfg,
- num_classes = 80,
- conf_thresh = 0.1,
- nms_thresh = 0.5,
- topk = 300,
- use_nms = False,
- ca_nms = False,
- ):
- super().__init__()
- # ---------------- Basic setting ----------------
- self.stride = cfg['out_stride']
- self.upsample_factor = cfg['max_stride'] // cfg['out_stride']
- self.num_classes = num_classes
- ## Transformer parameters
- self.num_queries_one2one = cfg['num_queries_one2one']
- self.num_queries_one2many = cfg['num_queries_one2many']
- self.num_queries = self.num_queries_one2one + self.num_queries_one2many
- ## Post-process parameters
- self.ca_nms = ca_nms
- self.use_nms = use_nms
- self.num_topk = topk
- self.nms_thresh = nms_thresh
- self.conf_thresh = conf_thresh
- # ---------------- Network setting ----------------
- ## Backbone Network
- self.backbone, feat_dims = build_backbone(cfg)
- ## Input projection
- self.input_proj = BasicConv(feat_dims[-1], cfg['hidden_dim'], kernel_size=1, act_type=None, norm_type='GN')
- ## Transformer Encoder
- self.transformer_encoder = TransformerEncoder(d_model = cfg['hidden_dim'],
- num_heads = cfg['en_num_heads'],
- num_layers = cfg['en_num_layers'],
- ffn_dim = cfg['en_ffn_dim'],
- dropout = cfg['en_dropout'],
- act_type = cfg['en_act'],
- pre_norm = cfg['en_pre_norm'],
- )
- ## Upsample layer
- self.upsample = UpSampleWrapper(cfg['hidden_dim'], self.upsample_factor)
-
- ## Output projection
- self.output_proj = BasicConv(cfg['hidden_dim'], cfg['hidden_dim'], kernel_size=3, padding=1, act_type='silu', norm_type='BN')
-
- ## Transformer
- self.query_embed = nn.Embedding(self.num_queries, cfg['hidden_dim'])
- self.transformer = PlainDETRTransformer(d_model = cfg['hidden_dim'],
- num_heads = cfg['de_num_heads'],
- ffn_dim = cfg['de_ffn_dim'],
- dropout = cfg['de_dropout'],
- act_type = cfg['de_act'],
- pre_norm = cfg['de_pre_norm'],
- rpe_hidden_dim = cfg['rpe_hidden_dim'],
- feature_stride = cfg['out_stride'],
- num_layers = cfg['de_num_layers'],
- use_checkpoint = cfg['use_checkpoint'],
- num_queries_one2one = cfg['num_queries_one2one'],
- num_queries_one2many = cfg['num_queries_one2many'],
- proposal_feature_levels = cfg['proposal_feature_levels'],
- proposal_in_stride = cfg['out_stride'],
- proposal_tgt_strides = cfg['proposal_tgt_strides'],
- return_intermediate = True,
- )
-
- ## Detect Head
- class_embed = nn.Linear(cfg['hidden_dim'], num_classes)
- bbox_embed = MLP(cfg['hidden_dim'], cfg['hidden_dim'], 4, 3)
- prior_prob = 0.01
- bias_value = -math.log((1 - prior_prob) / prior_prob)
- class_embed.bias.data = torch.ones(num_classes) * bias_value
- nn.init.constant_(bbox_embed.layers[-1].weight.data, 0)
- nn.init.constant_(bbox_embed.layers[-1].bias.data, 0)
- self.class_embed = get_clones(class_embed, cfg['de_num_layers'] + 1)
- self.bbox_embed = get_clones(bbox_embed, cfg['de_num_layers'] + 1)
- nn.init.constant_(self.bbox_embed[0].layers[-1].bias.data[2:], -2.0)
- self.transformer.decoder.bbox_embed = self.bbox_embed
- self.transformer.decoder.class_embed = self.class_embed
- def get_posembed(self, d_model, mask, temperature=10000, normalize=False):
- not_mask = ~mask
- scale = 2 * torch.pi
- num_pos_feats = d_model // 2
- # -------------- Generate XY coords --------------
- ## [B, H, W]
- y_embed = not_mask.cumsum(1, dtype=torch.float32)
- x_embed = not_mask.cumsum(2, dtype=torch.float32)
- ## Normalize coords
- if normalize:
- y_embed = (y_embed - 0.5) / (y_embed[:, -1:, :] + 1e-6)
- x_embed = (x_embed - 0.5) / (x_embed[:, :, -1:] + 1e-6)
- else:
- y_embed = y_embed - 0.5
- x_embed = x_embed - 0.5
- # [H, W] -> [B, H, W, 2]
- pos = torch.stack([x_embed, y_embed], dim=-1)
- # -------------- Sine-PosEmbedding --------------
- dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=pos.device)
- dim_t_ = torch.div(dim_t, 2, rounding_mode='floor') / num_pos_feats
- dim_t = temperature ** (2 * dim_t_)
- x_embed = pos[..., 0] * scale
- y_embed = pos[..., 1] * scale
- pos_x = x_embed[..., None] / dim_t
- pos_y = y_embed[..., None] / dim_t
- pos_x = torch.stack((pos_x[..., 0::2].sin(), pos_x[..., 1::2].cos()), dim=-1).flatten(-2)
- pos_y = torch.stack((pos_y[..., 0::2].sin(), pos_y[..., 1::2].cos()), dim=-1).flatten(-2)
- pos_embed = torch.cat((pos_y, pos_x), dim=-1)
-
- # [B, H, W, C] -> [B, C, H, W]
- pos_embed = pos_embed.permute(0, 3, 1, 2)
-
- return pos_embed
- def post_process(self, box_pred, cls_pred):
- # Top-k select
- cls_pred = cls_pred[0].flatten().sigmoid_()
- box_pred = box_pred[0]
- # Keep top k top scoring indices only.
- num_topk = min(self.num_topk, box_pred.size(0))
- # Topk candidates
- predicted_prob, topk_idxs = cls_pred.sort(descending=True)
- topk_scores = predicted_prob[:num_topk]
- topk_idxs = topk_idxs[:self.num_topk]
- # Filter out the proposals with low confidence score
- keep_idxs = topk_scores > self.conf_thresh
- topk_scores = topk_scores[keep_idxs]
- topk_idxs = topk_idxs[keep_idxs]
- topk_box_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
- ## Top-k results
- topk_labels = topk_idxs % self.num_classes
- topk_bboxes = box_pred[topk_box_idxs]
- topk_scores = topk_scores.cpu().numpy()
- topk_labels = topk_labels.cpu().numpy()
- topk_bboxes = topk_bboxes.cpu().numpy()
- # nms
- if self.use_nms:
- topk_scores, topk_labels, topk_bboxes = multiclass_nms(
- topk_scores, topk_labels, topk_bboxes, self.nms_thresh, self.num_classes, self.nms_class_agnostic)
- return topk_bboxes, topk_scores, topk_labels
- def resize_mask(self, src, mask=None):
- bs, c, h, w = src.shape
- if mask is not None:
- # [B, H, W]
- mask = nn.functional.interpolate(mask[None].float(), size=[h, w]).bool()[0]
- else:
- mask = torch.zeros([bs, h, w], device=src.device, dtype=torch.bool)
- return mask
-
- @torch.jit.unused
- def _set_aux_loss(self, outputs_class, outputs_coord, outputs_coord_old, outputs_deltas):
- # this is a workaround to make torchscript happy, as torchscript
- # doesn't support dictionary with non-homogeneous values, such
- # as a dict having both a Tensor and a list.
- return [
- {"pred_logits": a, "pred_boxes": b, "pred_boxes_old": c, "pred_deltas": d, }
- for a, b, c, d in zip(outputs_class[:-1], outputs_coord[:-1], outputs_coord_old[:-1], outputs_deltas[:-1])
- ]
- def inference_single_image(self, x):
- # ----------- Image Encoder -----------
- pyramid_feats = self.backbone(x)
- src = self.input_proj(pyramid_feats[-1])
- src = self.transformer_encoder(src)
- src = self.upsample(src)
- src = self.output_proj(src)
- # ----------- Prepare inputs for Transformer -----------
- mask = self.resize_mask(src)
- pos_embed = self.get_posembed(src.shape[1], mask, normalize=False)
- query_embeds = self.query_embed.weight[:self.num_queries_one2one]
- self_attn_mask = None
- # -----------Transformer -----------
- (
- hs,
- init_reference,
- inter_references,
- _,
- _,
- _,
- _,
- max_shape
- ) = self.transformer(src, mask, pos_embed, query_embeds, self_attn_mask)
- # ----------- Process outputs -----------
- outputs_classes_one2one = []
- outputs_coords_one2one = []
- outputs_deltas_one2one = []
- for lid in range(hs.shape[0]):
- if lid == 0:
- reference = init_reference
- else:
- reference = inter_references[lid - 1]
- outputs_class = self.class_embed[lid](hs[lid])
- tmp = self.bbox_embed[lid](hs[lid])
- outputs_coord = self.transformer.decoder.delta2bbox(reference, tmp, max_shape) # xyxy
- outputs_classes_one2one.append(outputs_class[:, :self.num_queries_one2one])
- outputs_coords_one2one.append(outputs_coord[:, :self.num_queries_one2one])
- outputs_deltas_one2one.append(tmp[:, :self.num_queries_one2one])
- outputs_classes_one2one = torch.stack(outputs_classes_one2one)
- outputs_coords_one2one = torch.stack(outputs_coords_one2one)
- # ------------ Post process ------------
- cls_pred = outputs_classes_one2one[-1]
- box_pred = outputs_coords_one2one[-1]
-
- # post-process
- bboxes, scores, labels = self.post_process(box_pred, cls_pred)
- # normalize bbox
- bboxes[..., 0::2] /= x.shape[-1]
- bboxes[..., 1::2] /= x.shape[-2]
- bboxes = bboxes.clip(0., 1.)
- return bboxes, scores, labels
-
- def forward(self, x, src_mask=None, targets=None):
- if not self.training:
- return self.inference_single_image(x)
- # ----------- Image Encoder -----------
- pyramid_feats = self.backbone(x)
- src = self.input_proj(pyramid_feats[-1])
- src = self.transformer_encoder(src)
- src = self.upsample(src)
- src = self.output_proj(src)
- # ----------- Prepare inputs for Transformer -----------
- mask = self.resize_mask(src, src_mask)
- pos_embed = self.get_posembed(src.shape[1], mask, normalize=False)
- query_embeds = self.query_embed.weight
- self_attn_mask = torch.zeros(
- [self.num_queries, self.num_queries, ]).bool().to(src.device)
- self_attn_mask[self.num_queries_one2one:, 0: self.num_queries_one2one, ] = True
- self_attn_mask[0: self.num_queries_one2one, self.num_queries_one2one:, ] = True
- # -----------Transformer -----------
- (
- hs,
- init_reference,
- inter_references,
- enc_outputs_class,
- enc_outputs_coord_unact,
- enc_outputs_delta,
- output_proposals,
- max_shape
- ) = self.transformer(src, mask, pos_embed, query_embeds, self_attn_mask)
- # ----------- Process outputs -----------
- outputs_classes_one2one = []
- outputs_coords_one2one = []
- outputs_coords_old_one2one = []
- outputs_deltas_one2one = []
- outputs_classes_one2many = []
- outputs_coords_one2many = []
- outputs_coords_old_one2many = []
- outputs_deltas_one2many = []
- for lid in range(hs.shape[0]):
- if lid == 0:
- reference = init_reference
- else:
- reference = inter_references[lid - 1]
- outputs_class = self.class_embed[lid](hs[lid])
- tmp = self.bbox_embed[lid](hs[lid])
- outputs_coord = self.transformer.decoder.box_xyxy_to_cxcywh(
- self.transformer.decoder.delta2bbox(reference, tmp, max_shape))
- outputs_classes_one2one.append(outputs_class[:, 0: self.num_queries_one2one])
- outputs_classes_one2many.append(outputs_class[:, self.num_queries_one2one:])
- outputs_coords_one2one.append(outputs_coord[:, 0: self.num_queries_one2one])
- outputs_coords_one2many.append(outputs_coord[:, self.num_queries_one2one:])
- outputs_coords_old_one2one.append(reference[:, :self.num_queries_one2one])
- outputs_coords_old_one2many.append(reference[:, self.num_queries_one2one:])
- outputs_deltas_one2one.append(tmp[:, :self.num_queries_one2one])
- outputs_deltas_one2many.append(tmp[:, self.num_queries_one2one:])
- outputs_classes_one2one = torch.stack(outputs_classes_one2one)
- outputs_coords_one2one = torch.stack(outputs_coords_one2one)
- outputs_classes_one2many = torch.stack(outputs_classes_one2many)
- outputs_coords_one2many = torch.stack(outputs_coords_one2many)
- out = {
- "pred_logits": outputs_classes_one2one[-1],
- "pred_boxes": outputs_coords_one2one[-1],
- "pred_logits_one2many": outputs_classes_one2many[-1],
- "pred_boxes_one2many": outputs_coords_one2many[-1],
- "pred_boxes_old": outputs_coords_old_one2one[-1],
- "pred_deltas": outputs_deltas_one2one[-1],
- "pred_boxes_old_one2many": outputs_coords_old_one2many[-1],
- "pred_deltas_one2many": outputs_deltas_one2many[-1],
- }
- out["aux_outputs"] = self._set_aux_loss(
- outputs_classes_one2one, outputs_coords_one2one, outputs_coords_old_one2one, outputs_deltas_one2one
- )
- out["aux_outputs_one2many"] = self._set_aux_loss(
- outputs_classes_one2many, outputs_coords_one2many, outputs_coords_old_one2many, outputs_deltas_one2many
- )
- out["enc_outputs"] = {
- "pred_logits": enc_outputs_class,
- "pred_boxes": enc_outputs_coord_unact,
- "pred_boxes_old": output_proposals,
- "pred_deltas": enc_outputs_delta,
- }
- return out
|