detr_config.py 3.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108
  1. # DETR
  2. class DetrBaseConfig(object):
  3. def __init__(self):
  4. pass
  5. def print_config(self):
  6. config_dict = {key: value for key, value in self.__dict__.items() if not key.startswith('__')}
  7. for k, v in config_dict.items():
  8. print("{} : {}".format(k, v))
  9. detr_cfg = {
  10. 'detr_r50':{
  11. # ---------------- Model config ----------------
  12. ## Model scale
  13. # Backbone
  14. 'backbone': 'resnet50',
  15. 'backbone_norm': 'FrozeBN',
  16. 'res5_dilation': False,
  17. 'pretrained': True,
  18. 'pretrained_weight': 'spark_resnet50', # Cls: imagenet1k_v2; MIM: spark_resnet50
  19. 'freeze_at': 1, # freeze stem layer + layer1 of the backbone
  20. 'max_stride': 32,
  21. 'out_stride': 16,
  22. # Transformer Ecndoer
  23. 'hidden_dim': 256,
  24. 'en_num_heads': 8,
  25. 'en_num_layers': 6,
  26. 'en_ffn_dim': 2048,
  27. 'en_dropout': 0.1,
  28. 'en_act': 'gelu',
  29. 'en_pre_norm': True,
  30. # Transformer Decoder
  31. 'transformer': 'detr_transformer',
  32. 'de_num_heads': 8,
  33. 'de_num_layers': 6,
  34. 'de_ffn_dim': 2048,
  35. 'de_dropout': 0.0,
  36. 'de_act': 'gelu',
  37. 'de_pre_norm': True,
  38. 'rpe_hidden_dim': 512,
  39. 'use_checkpoint': False,
  40. 'proposal_feature_levels': 3,
  41. 'proposal_tgt_strides': [8, 16, 32],
  42. 'num_queries_one2one': 300,
  43. 'num_queries_one2many': 1500,
  44. # Post process
  45. 'train_topk': 300,
  46. 'train_conf_thresh': 0.001,
  47. 'train_nms_thresh': 0.5,
  48. 'test_topk': 300,
  49. 'test_conf_thresh': 0.001,
  50. 'test_nms_thresh': 0.5,
  51. 'nms_class_agnostic': True, # We prefer to use class-agnostic NMS in the demo.
  52. # ---------------- Assignment config ----------------
  53. 'matcher_hpy': {'cost_class': 2.0,
  54. 'cost_bbox': 1.0,
  55. 'cost_giou': 2.0,},
  56. # ---------------- Loss config ----------------
  57. 'k_one2many': 6,
  58. 'lambda_one2many': 1.0,
  59. 'loss_coeff': {'class': 2,
  60. 'bbox': 1,
  61. 'giou': 2,},
  62. # ----------------- Training -----------------
  63. ## Optimizer
  64. 'optimizer': 'adamw',
  65. 'base_lr': 0.0002 / 16,
  66. 'backbone_lr_ratio': 0.1,
  67. 'momentum': None,
  68. 'weight_decay': 0.05,
  69. 'clip_max_norm': 0.1,
  70. ## Params dict
  71. 'param_dict_type': 'detr',
  72. 'lr_backbone_names': ['backbone',],
  73. 'lr_linear_proj_names': ["reference_points", "sampling_offsets",], # These two names are not required by PlainDETR
  74. 'lr_linear_proj_mult': 0.1,
  75. 'wd_norm_names': ["norm", "bias", "rpb_mlp", "cpb_mlp", "level_embed",],
  76. 'wd_norm_mult': 0.0,
  77. ## LR Scheduler
  78. 'lr_scheduler': 'step',
  79. 'warmup': 'linear',
  80. 'warmup_iters': 1000,
  81. 'warmup_factor': 0.00066667,
  82. ## Training scheduler
  83. 'scheduler': '1x',
  84. 'max_epoch': 12, # 1x
  85. 'lr_epoch': [11], # 1x
  86. # ----------------- Input -----------------
  87. ## Transforms
  88. 'train_min_size': [800], # short edge of image
  89. 'train_min_size2': [400, 500, 600],
  90. 'train_max_size': 1333,
  91. 'test_min_size': [800],
  92. 'test_max_size': 1333,
  93. 'random_crop_size': [320, 600],
  94. ## Pixel mean & std
  95. 'pixel_mean': [0.485, 0.456, 0.406],
  96. 'pixel_std': [0.229, 0.224, 0.225],
  97. ## Transforms
  98. 'detr_style': True,
  99. 'trans_config': None,
  100. 'box_format': 'xywh',
  101. 'normalize_coords': False,
  102. },
  103. }