yolov9_config.py 5.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172
  1. # Gelan (proposed by yolov9) config
  2. def build_yolov9_config(args):
  3. if args.model == 'yolov9_s':
  4. return GElanSConfig()
  5. elif args.model == 'yolov9_c':
  6. return GElanCConfig()
  7. else:
  8. raise NotImplementedError("No config for model: {}".format(args.model))
  9. # GELAN-Base config
  10. class GElanBaseConfig(object):
  11. def __init__(self) -> None:
  12. # ---------------- Model config ----------------
  13. self.reg_max = 16
  14. self.out_stride = [8, 16, 32]
  15. self.max_stride = 32
  16. ## Backbone
  17. self.use_pretrained = True
  18. self.backbone_feats = {
  19. "c1": [64],
  20. "c2": [128, [128, 64], 256],
  21. "c3": [256, [256, 128], 512],
  22. "c4": [512, [512, 256], 512],
  23. "c5": [512, [512, 256], 512],
  24. }
  25. self.model_scale = "l"
  26. self.backbone_depth = 1
  27. ## Neck
  28. self.spp_inter_dim = 256
  29. self.spp_out_dim = 512
  30. ## FPN
  31. self.fpn_depth = 1
  32. self.fpn_feats_td = {
  33. "p4": [[512, 256], 512],
  34. "p3": [[256, 128], 256],
  35. }
  36. self.fpn_feats_bu = {
  37. "p4": [[512, 256], 512],
  38. "p5": [[512, 256], 512],
  39. }
  40. ## Head
  41. self.num_cls_head = 2
  42. self.num_reg_head = 2
  43. # ---------------- Post-process config ----------------
  44. ## Post process
  45. self.val_topk = 1000
  46. self.val_conf_thresh = 0.001
  47. self.val_nms_thresh = 0.7
  48. self.test_topk = 100
  49. self.test_conf_thresh = 0.2
  50. self.test_nms_thresh = 0.5
  51. # ---------------- Assignment config ----------------
  52. ## Matcher
  53. self.tal_topk_candidates = 10
  54. self.tal_alpha = 0.5
  55. self.tal_beta = 6.0
  56. ## Loss weight
  57. self.loss_cls = 0.5
  58. self.loss_box = 7.5
  59. self.loss_dfl = 1.5
  60. # ---------------- ModelEMA config ----------------
  61. self.use_ema = True
  62. self.ema_decay = 0.9998
  63. self.ema_tau = 2000
  64. # ---------------- Optimizer config ----------------
  65. self.trainer = 'yolo'
  66. self.optimizer = 'adamw'
  67. self.base_lr = 0.001 # base_lr = per_image_lr * batch_size
  68. self.min_lr_ratio = 0.01 # min_lr = base_lr * min_lr_ratio
  69. self.batch_size_base = 64
  70. self.momentum = 0.9
  71. self.weight_decay = 0.05
  72. self.clip_max_norm = 35.0
  73. self.warmup_bias_lr = 0.1
  74. self.warmup_momentum = 0.8
  75. # ---------------- Lr Scheduler config ----------------
  76. self.warmup_epoch = 3
  77. self.lr_scheduler = "cosine"
  78. self.max_epoch = 300
  79. self.eval_epoch = 10
  80. self.no_aug_epoch = 20
  81. # ---------------- Data process config ----------------
  82. self.aug_type = 'yolo'
  83. self.mosaic_prob = 0.0
  84. self.mixup_prob = 0.0
  85. self.copy_paste = 0.0 # approximated by the YOLOX's mixup
  86. self.multi_scale = [0.5, 1.25] # multi scale: [img_size * 0.5, img_size * 1.25]
  87. ## Pixel mean & std
  88. self.pixel_mean = [0., 0., 0.]
  89. self.pixel_std = [255., 255., 255.]
  90. ## Transforms
  91. self.train_img_size = 640
  92. self.test_img_size = 640
  93. self.affine_params = {
  94. 'degrees': 0.0,
  95. 'translate': 0.2,
  96. 'scale': [0.1, 2.0],
  97. 'shear': 0.0,
  98. 'perspective': 0.0,
  99. 'hsv_h': 0.015,
  100. 'hsv_s': 0.7,
  101. 'hsv_v': 0.4,
  102. }
  103. def print_config(self):
  104. config_dict = {key: value for key, value in self.__dict__.items() if not key.startswith('__')}
  105. for k, v in config_dict.items():
  106. print("{} : {}".format(k, v))
  107. # GELAN-C
  108. class GElanCConfig(GElanBaseConfig):
  109. def __init__(self) -> None:
  110. super().__init__()
  111. self.use_pretrained = True
  112. self.model_scale = "c"
  113. # ---------------- Data process config ----------------
  114. self.mosaic_prob = 1.0
  115. self.mixup_prob = 0.1
  116. self.copy_paste = 0.0
  117. # GELAN-S
  118. class GElanSConfig(GElanBaseConfig):
  119. def __init__(self) -> None:
  120. super().__init__()
  121. # ---------------- Model config ----------------
  122. ## Backbone
  123. self.use_pretrained = True
  124. self.backbone_feats = {
  125. "c1": [32],
  126. "c2": [64, [64, 32], 64],
  127. "c3": [64, [64, 32], 128],
  128. "c4": [128, [128, 64], 256],
  129. "c5": [256, [256, 128], 256],
  130. }
  131. self.model_scale = "s"
  132. self.backbone_depth = 3
  133. ## Neck
  134. self.spp_inter_dim = 128
  135. self.spp_out_dim = 256
  136. ## FPN
  137. self.fpn_depth = 3
  138. self.fpn_feats_td = {
  139. "p4": [[256, 128], 256],
  140. "p3": [[128, 64], 128],
  141. }
  142. self.fpn_feats_bu = {
  143. "p4": [[256, 128], 256],
  144. "p5": [[256, 128], 256],
  145. }
  146. # ---------------- Data process config ----------------
  147. self.mosaic_prob = 1.0
  148. self.mixup_prob = 0.0
  149. self.copy_paste = 0.0 # approximated by the YOLOX's mixup
  150. def print_config(self):
  151. config_dict = {key: value for key, value in self.__dict__.items() if not key.startswith('__')}
  152. for k, v in config_dict.items():
  153. print("{} : {}".format(k, v))