| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from typing import List
- # --------------------- Basic modules ---------------------
- class ConvModule(nn.Module):
- def __init__(self,
- in_dim,
- out_dim,
- kernel_size=1,
- stride=1,
- groups=1,
- use_act=True,
- ):
- super(ConvModule, self).__init__()
- self.conv = nn.Conv2d(in_dim, out_dim, kernel_size=kernel_size, stride=stride, padding=kernel_size//2, groups=groups, bias=False)
- self.norm = nn.BatchNorm2d(out_dim)
- self.act = nn.SiLU(inplace=True) if use_act else nn.Identity()
- def forward(self, x):
- return self.act(self.norm(self.conv(x)))
- class YoloBottleneck(nn.Module):
- def __init__(self,
- in_dim :int,
- out_dim :int,
- kernel_size :List = [1, 3],
- expansion :float = 0.5,
- shortcut :bool = False,
- ):
- super(YoloBottleneck, self).__init__()
- inter_dim = int(out_dim * expansion)
- # ----------------- Network setting -----------------
- self.conv_layer1 = ConvModule(in_dim, inter_dim, kernel_size=kernel_size[0], stride=1)
- self.conv_layer2 = ConvModule(inter_dim, out_dim, kernel_size=kernel_size[1], stride=1)
- self.shortcut = shortcut and in_dim == out_dim
- def forward(self, x):
- h = self.conv_layer2(self.conv_layer1(x))
- return x + h if self.shortcut else h
- class CIBBlock(nn.Module):
- def __init__(self,
- in_dim :int,
- out_dim :int,
- shortcut :bool = False,
- ) -> None:
- super(CIBBlock, self).__init__()
- # ----------------- Network setting -----------------
- self.cv1 = ConvModule(in_dim, in_dim, kernel_size=3, groups=in_dim)
- self.cv2 = ConvModule(in_dim, in_dim * 2, kernel_size=1)
- self.cv3 = ConvModule(in_dim * 2, in_dim * 2, kernel_size=3, groups=in_dim * 2)
- self.cv4 = ConvModule(in_dim * 2, out_dim, kernel_size=1)
- self.cv5 = ConvModule(out_dim, out_dim, kernel_size=3, groups=out_dim)
- self.shortcut = shortcut and in_dim == out_dim
- def forward(self, x):
- h = self.cv5(self.cv4(self.cv3(self.cv2(self.cv1(x)))))
- return x + h if self.shortcut else h
- # --------------------- Yolov10 modules ---------------------
- class C2fBlock(nn.Module):
- def __init__(self,
- in_dim: int,
- out_dim: int,
- expansion : float = 0.5,
- num_blocks : int = 1,
- shortcut: bool = False,
- use_cib: bool = False,
- ):
- super(C2fBlock, self).__init__()
- inter_dim = round(out_dim * expansion)
- self.input_proj = ConvModule(in_dim, inter_dim * 2, kernel_size=1)
- self.output_proj = ConvModule((2 + num_blocks) * inter_dim, out_dim, kernel_size=1)
- if use_cib:
- self.blocks = nn.ModuleList([
- CIBBlock(in_dim = inter_dim,
- out_dim = inter_dim,
- shortcut = shortcut,
- ) for _ in range(num_blocks)])
- else:
- self.blocks = nn.ModuleList([
- YoloBottleneck(in_dim = inter_dim,
- out_dim = inter_dim,
- kernel_size = [3, 3],
- expansion = 1.0,
- shortcut = shortcut,
- ) for _ in range(num_blocks)])
- def forward(self, x):
- # Input proj
- x1, x2 = torch.chunk(self.input_proj(x), 2, dim=1)
- out = list([x1, x2])
- # Bottlenecl
- out.extend(m(out[-1]) for m in self.blocks)
- # Output proj
- out = self.output_proj(torch.cat(out, dim=1))
- return out
- class SCDown(nn.Module):
- def __init__(self, in_dim, out_dim, kernel_size: int = 3, stride: int = 2):
- super().__init__()
- self.cv1 = ConvModule(in_dim, out_dim, kernel_size=1)
- self.cv2 = ConvModule(out_dim, out_dim, kernel_size=kernel_size, stride=stride, groups=out_dim, use_act=False)
- def forward(self, x):
- return self.cv2(self.cv1(x))
- class Attention(nn.Module):
- def __init__(self, dim, num_heads=8, attn_ratio=0.5):
- super().__init__()
- self.num_heads = num_heads # number of the attention heads
- self.head_dim = dim // num_heads # per head dim of v
- self.key_dim = int(self.head_dim * attn_ratio) # per head dim of qk
- self.scale = self.key_dim**-0.5
-
- qkv_dims = dim + self.key_dim * num_heads * 2 # total dims of qkv
- self.qkv = ConvModule(dim, qkv_dims, kernel_size=1, use_act=False) # qkv projection
- self.proj = ConvModule(dim, dim, kernel_size=1, use_act=False) # output projection
- self.pe = ConvModule(dim, dim, kernel_size=3, groups=dim, use_act=False) # position embedding conv
- def forward(self, x):
- bs, c, h, w = x.shape
- seq_len = h * w
- qkv = self.qkv(x)
- # q, k -> [bs, nh, c_kdh, hw]; v -> [bs, nh, c_vh, hw]
- q, k, v = qkv.view(bs, self.num_heads, self.key_dim * 2 + self.head_dim, seq_len).split(
- [self.key_dim, self.key_dim, self.head_dim], dim=2
- )
- # [bs, nh, hw(q), c_kdh] x [bs, nh, c_kdh, hw(k)] -> [bs, nh, hw(q), hw(k)]
- attn = (q.transpose(-2, -1) @ k) * self.scale
- attn = attn.softmax(dim=-1)
- # [bs, nh, c_vh, hw(v)] x [bs, nh, hw(k), hw(q)] -> [bs, nh, c_vh, hw]
- x = (v @ attn.transpose(-2, -1)).view(bs, c, h, w) + self.pe(v.reshape(bs, c, h, w))
- x = self.proj(x)
- return x
- class PSABlock(nn.Module):
- def __init__(self, in_dim, out_dim, expansion=0.5):
- super().__init__()
- assert(in_dim == out_dim)
- self.inter_dim = int(in_dim * expansion)
- self.cv1 = ConvModule(in_dim, 2 * self.inter_dim, kernel_size=1)
- self.cv2 = ConvModule(2 * self.inter_dim, in_dim, kernel_size=1)
-
- self.attn = Attention(self.inter_dim, attn_ratio=0.5, num_heads=self.inter_dim // 64)
- self.ffn = nn.Sequential(
- ConvModule(self.inter_dim, self.inter_dim * 2, kernel_size=1),
- ConvModule(self.inter_dim * 2, self.inter_dim, kernel_size=1, use_act=False)
- )
-
- def forward(self, x):
- a, b = self.cv1(x).split((self.inter_dim, self.inter_dim), dim=1)
- b = b + self.attn(b)
- b = b + self.ffn(b)
- return self.cv2(torch.cat((a, b), 1))
- class SPPF(nn.Module):
- """
- This code referenced to https://github.com/ultralytics/yolov5
- """
- def __init__(self, in_dim, out_dim):
- super().__init__()
- ## ----------- Basic Parameters -----------
- inter_dim = in_dim // 2
- self.out_dim = out_dim
- ## ----------- Network Parameters -----------
- self.cv1 = ConvModule(in_dim, inter_dim, kernel_size=1, stride=1)
- self.cv2 = ConvModule(inter_dim * 4, out_dim, kernel_size=1, stride=1)
- self.m = nn.MaxPool2d(kernel_size=5, stride=1, padding=2)
- # Initialize all layers
- self.init_weights()
- def init_weights(self):
- """Initialize the parameters."""
- for m in self.modules():
- if isinstance(m, torch.nn.Conv2d):
- m.reset_parameters()
- def forward(self, x):
- x = self.cv1(x)
- y1 = self.m(x)
- y2 = self.m(y1)
- return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
- class DflLayer(nn.Module):
- def __init__(self, reg_max=16):
- """Initialize a convolutional layer with a given number of input channels."""
- super().__init__()
- self.reg_max = reg_max
- proj_init = torch.arange(reg_max, dtype=torch.float)
- self.proj_weight = nn.Parameter(proj_init.view([1, reg_max, 1, 1]), requires_grad=False)
- def forward(self, pred_reg, anchor, stride):
- bs, hw = pred_reg.shape[:2]
- # [bs, hw, 4*rm] -> [bs, 4*rm, hw] -> [bs, 4, rm, hw]
- pred_reg = pred_reg.permute(0, 2, 1).reshape(bs, 4, -1, hw)
- # [bs, 4, rm, hw] -> [bs, rm, 4, hw]
- pred_reg = pred_reg.permute(0, 2, 1, 3).contiguous()
- # [bs, rm, 4, hw] -> [bs, 1, 4, hw]
- delta_pred = F.conv2d(F.softmax(pred_reg, dim=1), self.proj_weight)
- # [bs, 1, 4, hw] -> [bs, 4, hw] -> [bs, hw, 4]
- delta_pred = delta_pred.view(bs, 4, hw).permute(0, 2, 1).contiguous()
- delta_pred *= stride
- # Decode bbox: tlbr -> xyxy
- x1y1_pred = anchor - delta_pred[..., :2]
- x2y2_pred = anchor + delta_pred[..., 2:]
- box_pred = torch.cat([x1y1_pred, x2y2_pred], dim=-1)
- return box_pred
|