| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131 |
- import sys
- import math
- import numpy as np
- import torch
- from utils.misc import MetricLogger, SmoothedValue
- from utils.misc import print_rank_0, all_reduce_mean, accuracy
- def train_one_epoch(args,
- device,
- model,
- model_ema,
- data_loader,
- optimizer,
- epoch,
- lr_scheduler_warmup,
- loss_scaler,
- criterion,
- local_rank=0,
- tblogger=None,
- mixup_fn=None):
- model.train(True)
- metric_logger = MetricLogger(delimiter=" ")
- metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
- header = 'Epoch: [{} / {}]'.format(epoch, args.max_epoch)
- print_freq = 20
- epoch_size = len(data_loader)
- optimizer.zero_grad()
- # train one epoch
- for iter_i, (images, targets) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
- ni = iter_i + epoch * epoch_size
- nw = args.wp_epoch * epoch_size
- # Warmup
- if nw > 0 and ni < nw:
- lr_scheduler_warmup(ni, optimizer)
- elif ni == nw:
- print("Warmup stage is over.")
- lr_scheduler_warmup.set_lr(optimizer, args.base_lr)
- # To device
- images = images.to(device, non_blocking=True)
- targets = targets.to(device, non_blocking=True)
- # Mixup
- if mixup_fn is not None:
- images, targets = mixup_fn(images, targets)
- # Inference
- with torch.cuda.amp.autocast():
- output = model(images)
- loss = criterion(output, targets)
- # Check loss
- loss_value = loss.item()
- if not math.isfinite(loss_value):
- print("Loss is {}, stopping training".format(loss_value))
- sys.exit(1)
- # Backward & Optimize
- loss /= args.grad_accumulate
- loss_scaler(loss, optimizer, clip_grad=args.max_grad_norm,
- parameters=model.parameters(), create_graph=False,
- update_grad=(iter_i + 1) % args.grad_accumulate == 0)
- if (iter_i + 1) % args.grad_accumulate == 0:
- optimizer.zero_grad()
- if model_ema is not None:
- model_ema.update(model)
- if torch.cuda.is_available():
- torch.cuda.synchronize()
- # Logs
- lr = optimizer.param_groups[0]["lr"]
- metric_logger.update(loss=loss_value)
- metric_logger.update(lr=lr)
- loss_value_reduce = all_reduce_mean(loss_value)
- if tblogger is not None and (iter_i + 1) % args.grad_accumulate == 0:
- """ We use epoch_1000x as the x-axis in tensorboard.
- This calibrates different curves when batch size changes.
- """
- epoch_1000x = int((iter_i / len(data_loader) + epoch) * 1000)
- tblogger.add_scalar('loss', loss_value_reduce, epoch_1000x)
- tblogger.add_scalar('lr', lr, epoch_1000x)
- # gather the stats from all processes
- metric_logger.synchronize_between_processes()
- print_rank_0("Averaged stats: {}".format(metric_logger), local_rank)
- return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
- @torch.no_grad()
- def evaluate(data_loader, model, device, local_rank):
- criterion = torch.nn.CrossEntropyLoss()
- metric_logger = MetricLogger(delimiter=" ")
- header = 'Test:'
- # switch to evaluation mode
- model.eval()
- for batch in metric_logger.log_every(data_loader, 10, header):
- images = batch[0]
- target = batch[-1]
- images = images.to(device, non_blocking=True)
- target = target.to(device, non_blocking=True)
- # compute output
- with torch.cuda.amp.autocast():
- output = model(images)
- loss = criterion(output, target)
- acc1, acc5 = accuracy(output, target, topk=(1, 5))
- batch_size = images.shape[0]
- metric_logger.update(loss=loss.item())
- metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
- metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
- # gather the stats from all processes
- metric_logger.synchronize_between_processes()
- print_rank_0('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}'
- .format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss),
- local_rank)
- return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
|