| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from utils.misc import sigmoid_focal_loss
- from utils.box_ops import get_ious
- from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
- from .matcher import AlignedOTAMatcher
- class SetCriterion(nn.Module):
- def __init__(self, cfg):
- super().__init__()
- # ------------- Basic parameters -------------
- self.cfg = cfg
- self.num_classes = cfg.num_classes
- # ------------- Focal loss -------------
- self.alpha = cfg.focal_loss_alpha
- self.gamma = cfg.focal_loss_gamma
- # ------------- Loss weight -------------
- self.weight_dict = {'loss_cls': cfg.loss_cls_weight,
- 'loss_reg': cfg.loss_reg_weight,
- 'loss_pss': cfg.loss_pss_weight}
- # ------------- Matcher & Loss weight -------------
- self.matcher_cfg = cfg.matcher_hpy
- self.matcher = AlignedOTAMatcher(cfg.num_classes,
- cfg.matcher_hpy['soft_center_radius'],
- cfg.matcher_hpy['topk_candidates'],
- )
- def loss_labels(self, pred_cls, target, beta=2.0, num_boxes=1.0):
- # Quality FocalLoss
- """
- pred_cls: (torch.Tensor): [N, C]。
- target: (tuple([torch.Tensor], [torch.Tensor])): label -> (N,), score -> (N)
- """
- label, score = target
- pred_sigmoid = pred_cls.sigmoid()
- scale_factor = pred_sigmoid
- zerolabel = scale_factor.new_zeros(pred_cls.shape)
- ce_loss = F.binary_cross_entropy_with_logits(
- pred_cls, zerolabel, reduction='none') * scale_factor.pow(beta)
-
- bg_class_ind = pred_cls.shape[-1]
- pos = ((label >= 0) & (label < bg_class_ind)).nonzero().squeeze(1)
- if pos.shape[0] > 0:
- pos_label = label[pos].long()
- scale_factor = score[pos] - pred_sigmoid[pos, pos_label]
- ce_loss[pos, pos_label] = F.binary_cross_entropy_with_logits(
- pred_cls[pos, pos_label], score[pos],
- reduction='none') * scale_factor.abs().pow(beta)
- return ce_loss.sum() / num_boxes
-
- def loss_bboxes(self, pred_box, gt_box, num_boxes=1.0, box_weight=None):
- ious = get_ious(pred_box, gt_box, box_mode="xyxy", iou_type='giou')
- loss_box = 1.0 - ious
- if box_weight is not None:
- loss_box = loss_box.squeeze(-1) * box_weight
- return loss_box.sum() / num_boxes
- def loss_pss(self, pred_pss, target, num_boxes=1.0):
- loss_pss = sigmoid_focal_loss(pred_pss, target, alpha=0.25, gamma=2.0)
- return loss_pss.sum() / num_boxes
- def forward(self, outputs, targets):
- """
- outputs['pred_cls']: (Tensor) [B, M, C]
- outputs['pred_reg']: (Tensor) [B, M, 4]
- outputs['pred_box']: (Tensor) [B, M, 4]
- outputs['strides']: (List) [8, 16, 32, ...] stride of the model output
- targets: (List) [dict{'boxes': [...],
- 'labels': [...],
- 'orig_size': ...}, ...]
- """
- # -------------------- Pre-process --------------------
- bs = outputs['pred_cls'][0].shape[0]
- device = outputs['pred_cls'][0].device
- fpn_strides = outputs['strides']
- anchors = outputs['anchors']
- # Reshape: List([B, M, C]) -> [B, M, C]
- cls_preds = torch.cat(outputs['pred_cls'], dim=1)
- pss_preds = torch.cat(outputs['pred_pss'], dim=1)
- box_preds = torch.cat(outputs['pred_box'], dim=1)
- masks = ~torch.cat(outputs['mask'], dim=1).view(-1)
- # -------------------- Label Assignment --------------------
- cls_targets = []
- pss_targets = []
- box_targets = []
- assign_metrics = []
- for batch_idx in range(bs):
- tgt_labels = targets[batch_idx]["labels"].to(device) # [N,]
- tgt_bboxes = targets[batch_idx]["boxes"].to(device) # [N, 4]
- # refine target
- tgt_boxes_wh = tgt_bboxes[..., 2:] - tgt_bboxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= 8)
- tgt_bboxes = tgt_bboxes[keep]
- tgt_labels = tgt_labels[keep]
- # label assignment
- assigned_result = self.matcher(fpn_strides=fpn_strides,
- anchors=anchors,
- pred_cls=cls_preds[batch_idx].detach(),
- pred_box=box_preds[batch_idx].detach(),
- gt_labels=tgt_labels,
- gt_bboxes=tgt_bboxes
- )
- cls_targets.append(assigned_result['assigned_labels'])
- pss_targets.append(assigned_result['assigned_pss'])
- box_targets.append(assigned_result['assigned_bboxes'])
- assign_metrics.append(assigned_result['assign_metrics'])
- # List[B, M, C] -> Tensor[BM, C]
- cls_targets = torch.cat(cls_targets, dim=0) # [BM, C]
- pss_targets = torch.cat(pss_targets, dim=0) # [BM,]
- box_targets = torch.cat(box_targets, dim=0) # [BM, 4]
- assign_metrics = torch.cat(assign_metrics, dim=0) # [BM,]
- valid_idxs = (cls_targets >= 0) & masks
- foreground_idxs = (cls_targets >= 0) & (cls_targets != self.num_classes)
- num_fgs = assign_metrics.sum()
- if is_dist_avail_and_initialized():
- torch.distributed.all_reduce(num_fgs)
- num_fgs = torch.clamp(num_fgs / get_world_size(), min=1).item()
- num_targets = pss_targets[valid_idxs].sum()
- if is_dist_avail_and_initialized():
- torch.distributed.all_reduce(num_targets)
- num_targets = torch.clamp(num_targets / get_world_size(), min=1).item()
- # -------------------- Pos-Sample selector loss --------------------
- pss_preds = pss_preds.view(-1)[valid_idxs]
- loss_pss = self.loss_pss(pss_preds, pss_targets[valid_idxs], num_targets)
- # -------------------- Classification loss --------------------
- cls_preds = cls_preds.view(-1, self.num_classes)[valid_idxs]
- pss_preds = pss_preds.unsqueeze(-1)
- qfl_targets = (cls_targets[valid_idxs], assign_metrics[valid_idxs])
- loss_cls = self.loss_labels(cls_preds, qfl_targets, 2.0, num_fgs)
- # -------------------- Regression loss --------------------
- box_preds_pos = box_preds.view(-1, 4)[foreground_idxs]
- box_targets_pos = box_targets[foreground_idxs]
- box_weight = assign_metrics[foreground_idxs]
- loss_box = self.loss_bboxes(box_preds_pos, box_targets_pos, num_fgs, box_weight)
- total_loss = loss_cls * self.weight_dict["loss_cls"] + \
- loss_box * self.weight_dict["loss_reg"] + \
- loss_pss * self.weight_dict["loss_pss"]
- loss_dict = dict(
- loss_cls = loss_cls,
- loss_reg = loss_box,
- loss_pss = loss_pss,
- losses = total_loss,
- )
- return loss_dict
-
- if __name__ == "__main__":
- pass
|