detr_config.py 3.3 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798
  1. # Plain DETR
  2. detr_cfg = {
  3. 'detr_r50':{
  4. # ---------------- Model config ----------------
  5. ## Model scale
  6. # Backbone
  7. 'backbone': 'resnet50',
  8. 'backbone_norm': 'FrozeBN',
  9. 'res5_dilation': False,
  10. 'pretrained': True,
  11. 'pretrained_weight': 'spark_resnet50', # Cls: imagenet1k_v2; MIM: spark_resnet50
  12. 'freeze_at': 1, # freeze stem layer + layer1 of the backbone
  13. 'max_stride': 32,
  14. 'out_stride': 16,
  15. # Transformer Ecndoer
  16. 'hidden_dim': 256,
  17. 'en_num_heads': 8,
  18. 'en_num_layers': 6,
  19. 'en_ffn_dim': 2048,
  20. 'en_dropout': 0.1,
  21. 'en_act': 'gelu',
  22. 'en_pre_norm': True,
  23. # Transformer Decoder
  24. 'transformer': 'detr_transformer',
  25. 'de_num_heads': 8,
  26. 'de_num_layers': 6,
  27. 'de_ffn_dim': 2048,
  28. 'de_dropout': 0.0,
  29. 'de_act': 'gelu',
  30. 'de_pre_norm': True,
  31. 'rpe_hidden_dim': 512,
  32. 'use_checkpoint': False,
  33. 'proposal_feature_levels': 3,
  34. 'proposal_tgt_strides': [8, 16, 32],
  35. 'num_queries_one2one': 300,
  36. 'num_queries_one2many': 1500,
  37. # Post process
  38. 'train_topk': 300,
  39. 'train_conf_thresh': 0.001,
  40. 'train_nms_thresh': 0.5,
  41. 'test_topk': 300,
  42. 'test_conf_thresh': 0.001,
  43. 'test_nms_thresh': 0.5,
  44. 'nms_class_agnostic': True, # We prefer to use class-agnostic NMS in the demo.
  45. # ---------------- Assignment config ----------------
  46. 'matcher_hpy': {'cost_class': 2.0,
  47. 'cost_bbox': 1.0,
  48. 'cost_giou': 2.0,},
  49. # ---------------- Loss config ----------------
  50. 'k_one2many': 6,
  51. 'lambda_one2many': 1.0,
  52. 'loss_coeff': {'class': 2,
  53. 'bbox': 1,
  54. 'giou': 2,},
  55. # ----------------- Training -----------------
  56. ## Optimizer
  57. 'optimizer': 'adamw',
  58. 'base_lr': 0.0002 / 16,
  59. 'backbone_lr_ratio': 0.1,
  60. 'momentum': None,
  61. 'weight_decay': 0.05,
  62. 'clip_max_norm': 0.1,
  63. ## Params dict
  64. 'param_dict_type': 'detr',
  65. 'lr_backbone_names': ['backbone',],
  66. 'lr_linear_proj_names': ["reference_points", "sampling_offsets",], # These two names are not required by PlainDETR
  67. 'lr_linear_proj_mult': 0.1,
  68. 'wd_norm_names': ["norm", "bias", "rpb_mlp", "cpb_mlp", "level_embed",],
  69. 'wd_norm_mult': 0.0,
  70. ## LR Scheduler
  71. 'lr_scheduler': 'step',
  72. 'warmup': 'linear',
  73. 'warmup_iters': 1000,
  74. 'warmup_factor': 0.00066667,
  75. ## Training scheduler
  76. 'scheduler': '1x',
  77. 'max_epoch': 12, # 1x
  78. 'lr_epoch': [11], # 1x
  79. # ----------------- Input -----------------
  80. ## Transforms
  81. 'train_min_size': [800], # short edge of image
  82. 'train_min_size2': [400, 500, 600],
  83. 'train_max_size': 1333,
  84. 'test_min_size': [800],
  85. 'test_max_size': 1333,
  86. 'random_crop_size': [320, 600],
  87. ## Pixel mean & std
  88. 'pixel_mean': [0.485, 0.456, 0.406],
  89. 'pixel_std': [0.229, 0.224, 0.225],
  90. ## Transforms
  91. 'detr_style': True,
  92. 'trans_config': None,
  93. 'box_format': 'xywh',
  94. 'normalize_coords': False,
  95. },
  96. }