yolov6_pred.py 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135
  1. import torch
  2. import torch.nn as nn
  3. # -------------------- Detection Pred Layer --------------------
  4. ## Single-level pred layer
  5. class DetPredLayer(nn.Module):
  6. def __init__(self,
  7. cls_dim :int,
  8. reg_dim :int,
  9. stride :int,
  10. num_classes :int,
  11. ):
  12. super().__init__()
  13. # --------- Basic Parameters ----------
  14. self.stride = stride
  15. self.cls_dim = cls_dim
  16. self.reg_dim = reg_dim
  17. self.num_classes = num_classes
  18. # --------- Network Parameters ----------
  19. self.cls_pred = nn.Conv2d(self.cls_dim, num_classes, kernel_size=1)
  20. self.reg_pred = nn.Conv2d(self.reg_dim, 4, kernel_size=1)
  21. self.init_bias()
  22. def init_bias(self):
  23. # Init bias
  24. init_prob = 0.01
  25. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  26. # cls pred
  27. b = self.cls_pred.bias.view(1, -1)
  28. b.data.fill_(bias_value.item())
  29. self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  30. # reg pred
  31. b = self.reg_pred.bias.view(-1, )
  32. b.data.fill_(1.0)
  33. self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  34. w = self.reg_pred.weight
  35. w.data.fill_(0.)
  36. self.reg_pred.weight = torch.nn.Parameter(w, requires_grad=True)
  37. def generate_anchors(self, fmp_size):
  38. """
  39. fmp_size: (List) [H, W]
  40. """
  41. fmp_h, fmp_w = fmp_size
  42. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  43. # [H, W, 2] -> [HW, 2]
  44. anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  45. anchors = anchors + 0.5
  46. anchors = anchors * self.stride
  47. return anchors
  48. def forward(self, cls_feat, reg_feat):
  49. # 预测层
  50. cls_pred = self.cls_pred(cls_feat)
  51. reg_pred = self.reg_pred(reg_feat)
  52. # 生成网格坐标
  53. B, _, H, W = cls_pred.size()
  54. fmp_size = [H, W]
  55. anchors = self.generate_anchors(fmp_size)
  56. anchors = anchors.to(cls_pred.device)
  57. # 对 pred 的size做一些view调整,便于后续的处理
  58. # [B, C, H, W] -> [B, H, W, C] -> [B, H*W, C]
  59. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  60. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  61. # 解算边界框坐标
  62. cxcy_pred = reg_pred[..., :2] * self.stride + anchors
  63. bwbh_pred = torch.exp(reg_pred[..., 2:]) * self.stride
  64. pred_x1y1 = cxcy_pred - bwbh_pred * 0.5
  65. pred_x2y2 = cxcy_pred + bwbh_pred * 0.5
  66. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  67. # output dict
  68. outputs = {"pred_cls": cls_pred, # (torch.Tensor) [B, M, C]
  69. "pred_reg": reg_pred, # (torch.Tensor) [B, M, 4]
  70. "pred_box": box_pred, # (torch.Tensor) [B, M, 4]
  71. "anchors" : anchors, # (torch.Tensor) [M, 2]
  72. "fmp_size": fmp_size,
  73. "stride" : self.stride, # (Int)
  74. }
  75. return outputs
  76. ## Multi-level pred layer
  77. class Yolov6DetPredLayer(nn.Module):
  78. def __init__(self, cfg, in_dims):
  79. super().__init__()
  80. # --------- Basic Parameters ----------
  81. self.cfg = cfg
  82. # ----------- Network Parameters -----------
  83. ## pred layers
  84. self.multi_level_preds = nn.ModuleList(
  85. [DetPredLayer(cls_dim = in_dims[level],
  86. reg_dim = in_dims[level],
  87. stride = cfg.out_stride[level],
  88. num_classes = cfg.num_classes,)
  89. for level in range(cfg.num_levels)
  90. ])
  91. def forward(self, cls_feats, reg_feats):
  92. all_anchors = []
  93. all_fmp_sizes = []
  94. all_cls_preds = []
  95. all_reg_preds = []
  96. all_box_preds = []
  97. for level in range(self.cfg.num_levels):
  98. # -------------- Single-level prediction --------------
  99. outputs = self.multi_level_preds[level](cls_feats[level], reg_feats[level])
  100. # collect results
  101. all_cls_preds.append(outputs["pred_cls"])
  102. all_reg_preds.append(outputs["pred_reg"])
  103. all_box_preds.append(outputs["pred_box"])
  104. all_fmp_sizes.append(outputs["fmp_size"])
  105. all_anchors.append(outputs["anchors"])
  106. # output dict
  107. outputs = {"pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  108. "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4*(reg_max)]
  109. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  110. "fmp_sizes": all_fmp_sizes, # List(Tensor) [M, 1]
  111. "anchors": all_anchors, # List(Tensor) [M, 2]
  112. "strides": self.cfg.out_stride, # List(Int) = [8, 16, 32]
  113. }
  114. return outputs