loss.py 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145
  1. import torch
  2. import torch.nn.functional as F
  3. from utils.box_ops import bbox_iou
  4. from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
  5. from .matcher import TaskAlignedAssigner
  6. class SetCriterion(object):
  7. def __init__(self, cfg):
  8. # --------------- Basic parameters ---------------
  9. self.cfg = cfg
  10. self.reg_max = cfg.reg_max
  11. self.num_classes = cfg.num_classes
  12. # --------------- Loss config ---------------
  13. self.loss_cls_weight = cfg.loss_cls
  14. self.loss_box_weight = cfg.loss_box
  15. # --------------- Matcher config ---------------
  16. self.matcher = TaskAlignedAssigner(num_classes = cfg.num_classes,
  17. topk_candidates = cfg.tal_topk_candidates,
  18. alpha = cfg.tal_alpha,
  19. beta = cfg.tal_beta
  20. )
  21. def loss_classes(self, pred_cls, gt_score, gt_label):
  22. # Compute VFL
  23. pred_score = F.sigmoid(pred_cls).detach()
  24. target = F.one_hot(gt_label, num_classes=self.num_classes + 1)[..., :-1]
  25. weight = 0.75 * pred_score.pow(2.0) * (1 - target) + gt_score
  26. loss_cls = F.binary_cross_entropy_with_logits(pred_cls, gt_score, weight=weight, reduction='none')
  27. return loss_cls
  28. def loss_bboxes(self, pred_box, gt_box, bbox_weight):
  29. # regression loss
  30. ious = bbox_iou(pred_box, gt_box, xywh=False, GIoU=True)
  31. loss_box = (1.0 - ious.squeeze(-1)) * bbox_weight
  32. return loss_box
  33. def __call__(self, outputs, targets):
  34. """
  35. outputs['pred_cls']: List(Tensor) [B, M, C]
  36. outputs['pred_reg']: List(Tensor) [B, M, 4*(reg_max+1)]
  37. outputs['pred_box']: List(Tensor) [B, M, 4]
  38. outputs['anchors']: List(Tensor) [M, 2]
  39. outputs['strides']: List(Int) [8, 16, 32] output stride
  40. outputs['stride_tensor']: List(Tensor) [M, 1]
  41. targets: (List) [dict{'boxes': [...],
  42. 'labels': [...],
  43. 'orig_size': ...}, ...]
  44. """
  45. # preds: [B, M, C]
  46. cls_preds = torch.cat(outputs['pred_cls'], dim=1)
  47. box_preds = torch.cat(outputs['pred_box'], dim=1)
  48. bs, num_anchors = cls_preds.shape[:2]
  49. device = cls_preds.device
  50. anchors = torch.cat(outputs['anchors'], dim=0)
  51. # --------------- label assignment ---------------
  52. gt_label_targets = []
  53. gt_score_targets = []
  54. gt_bbox_targets = []
  55. fg_masks = []
  56. for batch_idx in range(bs):
  57. tgt_labels = targets[batch_idx]["labels"].to(device) # [Mp,]
  58. tgt_boxs = targets[batch_idx]["boxes"].to(device) # [Mp, 4]
  59. if self.cfg.normalize_coords:
  60. img_h, img_w = outputs['image_size']
  61. tgt_boxs[..., [0, 2]] *= img_w
  62. tgt_boxs[..., [1, 3]] *= img_h
  63. if self.cfg.box_format == 'xywh':
  64. tgt_boxs_x1y1 = tgt_boxs[..., :2] - 0.5 * tgt_boxs[..., 2:]
  65. tgt_boxs_x2y2 = tgt_boxs[..., :2] + 0.5 * tgt_boxs[..., 2:]
  66. tgt_boxs = torch.cat([tgt_boxs_x1y1, tgt_boxs_x2y2], dim=-1)
  67. # check target
  68. if len(tgt_labels) == 0 or tgt_boxs.max().item() == 0.:
  69. # There is no valid gt
  70. fg_mask = cls_preds.new_zeros(1, num_anchors).bool() # [1, M,]
  71. gt_label = cls_preds.new_zeros((1, num_anchors)).long() # [1, M,]
  72. gt_score = cls_preds.new_zeros((1, num_anchors, self.num_classes)).float() # [1, M, C]
  73. gt_box = cls_preds.new_zeros((1, num_anchors, 4)).float() # [1, M, 4]
  74. else:
  75. tgt_labels = tgt_labels[None, :, None] # [1, Mp, 1]
  76. tgt_boxs = tgt_boxs[None] # [1, Mp, 4]
  77. (
  78. gt_label, # [1, M]
  79. gt_box, # [1, M, 4]
  80. gt_score, # [1, M, C]
  81. fg_mask, # [1, M,]
  82. _
  83. ) = self.matcher(
  84. pd_scores = cls_preds[batch_idx:batch_idx+1].detach().sigmoid(),
  85. pd_bboxes = box_preds[batch_idx:batch_idx+1].detach(),
  86. anc_points = anchors,
  87. gt_labels = tgt_labels,
  88. gt_bboxes = tgt_boxs
  89. )
  90. gt_label_targets.append(gt_label)
  91. gt_score_targets.append(gt_score)
  92. gt_bbox_targets.append(gt_box)
  93. fg_masks.append(fg_mask)
  94. # List[B, 1, M, C] -> Tensor[B, M, C] -> Tensor[BM, C]
  95. fg_masks = torch.cat(fg_masks, 0).view(-1) # [BM,]
  96. gt_label_targets = torch.cat(gt_label_targets, 0).view(-1) # [BM,]
  97. gt_score_targets = torch.cat(gt_score_targets, 0).view(-1, self.num_classes) # [BM, C]
  98. gt_bbox_targets = torch.cat(gt_bbox_targets, 0).view(-1, 4) # [BM, 4]
  99. num_fgs = gt_score_targets.sum()
  100. # Average loss normalizer across all the GPUs
  101. if is_dist_avail_and_initialized():
  102. torch.distributed.all_reduce(num_fgs)
  103. num_fgs = (num_fgs / get_world_size()).clamp(1.0)
  104. # ------------------ Classification loss ------------------
  105. cls_preds = cls_preds.view(-1, self.num_classes)
  106. loss_cls = self.loss_classes(cls_preds, gt_score_targets, gt_label_targets)
  107. loss_cls = loss_cls.sum() / num_fgs
  108. # ------------------ Regression loss ------------------
  109. box_preds_pos = box_preds.view(-1, 4)[fg_masks]
  110. box_targets_pos = gt_bbox_targets.view(-1, 4)[fg_masks]
  111. bbox_weight = gt_score_targets[fg_masks].sum(-1)
  112. loss_box = self.loss_bboxes(box_preds_pos, box_targets_pos, bbox_weight)
  113. loss_box = loss_box.sum() / num_fgs
  114. # total loss
  115. losses = loss_cls * self.loss_cls_weight + loss_box * self.loss_box_weight
  116. loss_dict = dict(
  117. loss_cls = loss_cls,
  118. loss_box = loss_box,
  119. losses = losses
  120. )
  121. return loss_dict
  122. if __name__ == "__main__":
  123. pass