yolov6_config.py 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184
  1. # Yolov6 configuration
  2. def build_yolov6_config(args):
  3. if args.model == 'yolov6_n':
  4. return Yolov6NConfig()
  5. elif args.model == 'yolov6_s':
  6. return Yolov6SConfig()
  7. elif args.model == 'yolov6_m':
  8. return Yolov6MConfig()
  9. elif args.model == 'yolov6_l':
  10. return Yolov6LConfig()
  11. else:
  12. raise NotImplementedError("No config for model: {}".format(args.model))
  13. # YOLOv6-Base config
  14. class Yolov6BaseConfig(object):
  15. def __init__(self) -> None:
  16. # ---------------- Model config ----------------
  17. self.width = 1.0
  18. self.depth = 1.0
  19. self.reg_max = 16
  20. self.out_stride = [8, 16, 32]
  21. self.max_stride = 32
  22. self.num_levels = 3
  23. self.scale = "b"
  24. ## Backbone
  25. self.use_pretrained = True
  26. ## Neck
  27. self.neck_act = 'silu'
  28. self.neck_norm = 'BN'
  29. self.neck_depthwise = False
  30. self.neck_expand_ratio = 0.5
  31. self.spp_pooling_size = 5
  32. ## FPN
  33. self.fpn_act = 'silu'
  34. self.fpn_norm = 'BN'
  35. self.fpn_depthwise = False
  36. ## Head
  37. self.head_act = 'silu'
  38. self.head_norm = 'BN'
  39. self.head_depthwise = False
  40. self.num_cls_head = 1
  41. self.num_reg_head = 1
  42. # ---------------- Post-process config ----------------
  43. ## Post process
  44. self.val_topk = 1000
  45. self.val_conf_thresh = 0.001
  46. self.val_nms_thresh = 0.7
  47. self.test_topk = 100
  48. self.test_conf_thresh = 0.2
  49. self.test_nms_thresh = 0.5
  50. # ---------------- Assignment config ----------------
  51. ## Matcher
  52. self.tal_topk_candidates = 13
  53. self.tal_alpha = 1.0
  54. self.tal_beta = 6.0
  55. ## Loss weight
  56. self.loss_cls = 1.0
  57. self.loss_box = 2.5
  58. # ---------------- ModelEMA config ----------------
  59. self.use_ema = True
  60. self.ema_decay = 0.9998
  61. self.ema_tau = 2000
  62. # ---------------- Optimizer config ----------------
  63. self.trainer = 'yolo'
  64. self.optimizer = 'adamw'
  65. self.per_image_lr = 0.001 / 64
  66. self.base_lr = None # base_lr = per_image_lr * batch_size
  67. self.min_lr_ratio = 0.01 # min_lr = base_lr * min_lr_ratio
  68. self.momentum = 0.9
  69. self.weight_decay = 0.05
  70. self.clip_max_norm = 35.0
  71. self.warmup_bias_lr = 0.1
  72. self.warmup_momentum = 0.8
  73. # ---------------- Lr Scheduler config ----------------
  74. self.warmup_epoch = 3
  75. self.lr_scheduler = "cosine"
  76. self.max_epoch = 300
  77. self.eval_epoch = 10
  78. self.no_aug_epoch = 20
  79. # ---------------- Data process config ----------------
  80. self.aug_type = 'yolo'
  81. self.box_format = 'xyxy'
  82. self.normalize_coords = False
  83. self.mosaic_prob = 1.0
  84. self.mixup_prob = 0.15
  85. self.copy_paste = 0.0 # approximated by the YOLOX's mixup
  86. self.multi_scale = [0.5, 1.25] # multi scale: [img_size * 0.5, img_size * 1.25]
  87. ## Pixel mean & std
  88. self.pixel_mean = [0., 0., 0.]
  89. self.pixel_std = [255., 255., 255.]
  90. ## Transforms
  91. self.train_img_size = 640
  92. self.test_img_size = 640
  93. self.use_ablu = True
  94. self.affine_params = {
  95. 'degrees': 0.0,
  96. 'translate': 0.2,
  97. 'scale': [0.1, 2.0],
  98. 'shear': 0.0,
  99. 'perspective': 0.0,
  100. 'hsv_h': 0.015,
  101. 'hsv_s': 0.7,
  102. 'hsv_v': 0.4,
  103. }
  104. def print_config(self):
  105. config_dict = {key: value for key, value in self.__dict__.items() if not key.startswith('__')}
  106. for k, v in config_dict.items():
  107. print("{} : {}".format(k, v))
  108. # YOLOv6-N
  109. class Yolov6NConfig(Yolov6BaseConfig):
  110. def __init__(self) -> None:
  111. super().__init__()
  112. # ---------------- Model config ----------------
  113. self.width = 0.25
  114. self.depth = 0.34
  115. self.scale = "n"
  116. ## Backbone
  117. self.use_pretrained = True
  118. # ---------------- Data process config ----------------
  119. self.mosaic_prob = 1.0
  120. self.mixup_prob = 0.0
  121. self.copy_paste = 0.5
  122. # YOLOv6-S
  123. class Yolov6SConfig(Yolov6BaseConfig):
  124. def __init__(self) -> None:
  125. super().__init__()
  126. # ---------------- Model config ----------------
  127. self.width = 0.50
  128. self.depth = 0.34
  129. self.scale = "s"
  130. ## Backbone
  131. self.use_pretrained = True
  132. # ---------------- Data process config ----------------
  133. self.mosaic_prob = 1.0
  134. self.mixup_prob = 0.0
  135. self.copy_paste = 0.5
  136. # YOLOv6-M
  137. class Yolov6MConfig(Yolov6BaseConfig):
  138. def __init__(self) -> None:
  139. super().__init__()
  140. # ---------------- Model config ----------------
  141. self.width = 0.75
  142. self.depth = 0.67
  143. self.scale = "m"
  144. self.bk_csp_expansion = 0.67
  145. ## Backbone
  146. self.use_pretrained = True
  147. # ---------------- Data process config ----------------
  148. self.mosaic_prob = 1.0
  149. self.mixup_prob = 0.1
  150. self.copy_paste = 0.5
  151. # YOLOv6-L
  152. class Yolov6LConfig(Yolov6BaseConfig):
  153. def __init__(self) -> None:
  154. super().__init__()
  155. # ---------------- Model config ----------------
  156. self.width = 1.0
  157. self.depth = 1.0
  158. self.scale = "l"
  159. self.bk_csp_expansion = 0.5
  160. ## Backbone
  161. self.use_pretrained = True
  162. # ---------------- Data process config ----------------
  163. self.mosaic_prob = 1.0
  164. self.mixup_prob = 0.1
  165. self.copy_paste = 0.5