engine.py 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551
  1. import torch
  2. import torch.distributed as dist
  3. import os
  4. import random
  5. # ----------------- Extra Components -----------------
  6. from utils import distributed_utils
  7. from utils.misc import MetricLogger, SmoothedValue
  8. from utils.vis_tools import vis_data
  9. # ----------------- Optimizer & LrScheduler Components -----------------
  10. from utils.solver.optimizer import build_yolo_optimizer, build_rtdetr_optimizer
  11. from utils.solver.lr_scheduler import LinearWarmUpLrScheduler, build_lr_scheduler
  12. class YoloTrainer(object):
  13. def __init__(self,
  14. # Basic parameters
  15. args,
  16. cfg,
  17. device,
  18. # Model parameters
  19. model,
  20. model_ema,
  21. criterion,
  22. # Data parameters
  23. train_transform,
  24. val_transform,
  25. dataset,
  26. train_loader,
  27. evaluator,
  28. ):
  29. # ------------------- basic parameters -------------------
  30. self.args = args
  31. self.cfg = cfg
  32. self.epoch = 0
  33. self.best_map = -1.
  34. self.device = device
  35. self.criterion = criterion
  36. self.heavy_eval = False
  37. self.model_ema = model_ema
  38. # weak augmentatino stage
  39. self.second_stage = False
  40. self.second_stage_epoch = cfg.no_aug_epoch
  41. # path to save model
  42. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  43. os.makedirs(self.path_to_save, exist_ok=True)
  44. # ---------------------------- Transform ----------------------------
  45. self.train_transform = train_transform
  46. self.val_transform = val_transform
  47. # ---------------------------- Dataset & Dataloader ----------------------------
  48. self.dataset = dataset
  49. self.train_loader = train_loader
  50. # ---------------------------- Evaluator ----------------------------
  51. self.evaluator = evaluator
  52. # ---------------------------- Build Grad. Scaler ----------------------------
  53. self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
  54. # ---------------------------- Build Optimizer ----------------------------
  55. self.grad_accumulate = max(256 // args.batch_size, 1)
  56. cfg.base_lr = cfg.per_image_lr * args.batch_size * self.grad_accumulate
  57. cfg.min_lr = cfg.base_lr * cfg.min_lr_ratio
  58. self.optimizer, self.start_epoch = build_yolo_optimizer(cfg, model, args.resume)
  59. # ---------------------------- Build LR Scheduler ----------------------------
  60. warmup_iters = cfg.warmup_epoch * len(self.train_loader)
  61. self.lr_scheduler_warmup = LinearWarmUpLrScheduler(warmup_iters, cfg.base_lr, cfg.warmup_bias_lr, cfg.warmup_momentum)
  62. self.lr_scheduler = build_lr_scheduler(cfg, self.optimizer, args.resume)
  63. def train(self, model):
  64. for epoch in range(self.start_epoch, self.cfg.max_epoch):
  65. if self.args.distributed:
  66. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  67. # check second stage
  68. if epoch >= (self.cfg.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  69. self.check_second_stage()
  70. # save model of the last mosaic epoch
  71. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  72. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  73. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  74. torch.save({'model': model.state_dict(),
  75. 'mAP': round(self.evaluator.map*100, 1),
  76. 'optimizer': self.optimizer.state_dict(),
  77. 'epoch': self.epoch,
  78. 'args': self.args},
  79. checkpoint_path)
  80. # train one epoch
  81. self.epoch = epoch
  82. self.train_one_epoch(model)
  83. # LR Schedule
  84. if (epoch + 1) > self.cfg.warmup_epoch:
  85. self.lr_scheduler.step()
  86. # eval one epoch
  87. if self.heavy_eval:
  88. model_eval = model.module if self.args.distributed else model
  89. self.eval(model_eval)
  90. else:
  91. model_eval = model.module if self.args.distributed else model
  92. if (epoch % self.cfg.eval_epoch) == 0 or (epoch == self.cfg.max_epoch - 1):
  93. self.eval(model_eval)
  94. if self.args.debug:
  95. print("For debug mode, we only train 1 epoch")
  96. break
  97. def eval(self, model):
  98. # set eval mode
  99. model.eval()
  100. model_eval = model if self.model_ema is None else self.model_ema.ema
  101. cur_map = -1.
  102. to_save = False
  103. if distributed_utils.is_main_process():
  104. if self.evaluator is None:
  105. print('No evaluator ... save model and go on training.')
  106. to_save = True
  107. weight_name = '{}_no_eval.pth'.format(self.args.model)
  108. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  109. else:
  110. print('Eval ...')
  111. # Evaluate
  112. with torch.no_grad():
  113. self.evaluator.evaluate(model_eval)
  114. cur_map = self.evaluator.map
  115. if cur_map > self.best_map:
  116. # update best-map
  117. self.best_map = cur_map
  118. to_save = True
  119. # Save model
  120. if to_save:
  121. print('Saving state, epoch:', self.epoch)
  122. weight_name = '{}_best.pth'.format(self.args.model)
  123. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  124. state_dicts = {
  125. 'model': model_eval.state_dict(),
  126. 'mAP': round(cur_map*100, 1),
  127. 'optimizer': self.optimizer.state_dict(),
  128. 'lr_scheduler': self.lr_scheduler.state_dict(),
  129. 'epoch': self.epoch,
  130. 'args': self.args,
  131. }
  132. if self.model_ema is not None:
  133. state_dicts["ema_updates"] = self.model_ema.updates
  134. torch.save(state_dicts, checkpoint_path)
  135. if self.args.distributed:
  136. # wait for all processes to synchronize
  137. dist.barrier()
  138. # set train mode.
  139. model.train()
  140. def train_one_epoch(self, model):
  141. metric_logger = MetricLogger(delimiter=" ")
  142. metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
  143. metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
  144. header = 'Epoch: [{} / {}]'.format(self.epoch, self.cfg.max_epoch)
  145. epoch_size = len(self.train_loader)
  146. print_freq = 10
  147. # basic parameters
  148. epoch_size = len(self.train_loader)
  149. img_size = self.cfg.train_img_size
  150. nw = epoch_size * self.cfg.warmup_epoch
  151. # Train one epoch
  152. for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
  153. ni = iter_i + self.epoch * epoch_size
  154. # Warmup
  155. if nw > 0 and ni < nw:
  156. self.lr_scheduler_warmup(ni, self.optimizer)
  157. elif ni == nw:
  158. print("Warmup stage is over.")
  159. self.lr_scheduler_warmup.set_lr(self.optimizer, self.cfg.base_lr)
  160. # To device
  161. images = images.to(self.device, non_blocking=True).float()
  162. # Multi scale
  163. images, targets, img_size = self.rescale_image_targets(
  164. images, targets, self.cfg.max_stride, self.cfg.multi_scale)
  165. # Visualize train targets
  166. if self.args.vis_tgt:
  167. vis_data(images,
  168. targets,
  169. self.cfg.num_classes,
  170. self.cfg.normalize_coords,
  171. self.train_transform.color_format,
  172. self.cfg.pixel_mean,
  173. self.cfg.pixel_std,
  174. self.cfg.box_format)
  175. # Inference
  176. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  177. outputs = model(images)
  178. # Compute loss
  179. loss_dict = self.criterion(outputs=outputs, targets=targets)
  180. losses = loss_dict['losses']
  181. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  182. losses /= self.grad_accumulate
  183. # Backward
  184. self.scaler.scale(losses).backward()
  185. # Gradient clip
  186. if self.cfg.clip_max_norm > 0:
  187. self.scaler.unscale_(self.optimizer)
  188. torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.cfg.clip_max_norm)
  189. # Optimize
  190. if (iter_i + 1) % self.grad_accumulate == 0:
  191. self.scaler.step(self.optimizer)
  192. self.scaler.update()
  193. self.optimizer.zero_grad()
  194. # ModelEMA
  195. if self.model_ema is not None:
  196. self.model_ema.update(model)
  197. # Update log
  198. metric_logger.update(**loss_dict_reduced)
  199. metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
  200. metric_logger.update(size=img_size)
  201. if self.args.debug:
  202. print("For debug mode, we only train 1 iteration")
  203. break
  204. # Gather the stats from all processes
  205. metric_logger.synchronize_between_processes()
  206. print("Averaged stats:", metric_logger)
  207. def rescale_image_targets(self, images, targets, max_stride, multi_scale_range=[0.5, 1.5]):
  208. """
  209. Deployed for Multi scale trick.
  210. """
  211. # During training phase, the shape of input image is square.
  212. old_img_size = images.shape[-1]
  213. min_img_size = old_img_size * multi_scale_range[0]
  214. max_img_size = old_img_size * multi_scale_range[1]
  215. # Choose a new image size
  216. new_img_size = random.randrange(min_img_size, max_img_size + max_stride, max_stride)
  217. # Resize
  218. if new_img_size != old_img_size:
  219. # interpolate
  220. images = torch.nn.functional.interpolate(
  221. input=images,
  222. size=new_img_size,
  223. mode='bilinear',
  224. align_corners=False)
  225. # rescale targets
  226. if not self.cfg.normalize_coords:
  227. for tgt in targets:
  228. boxes = tgt["boxes"].clone()
  229. labels = tgt["labels"].clone()
  230. boxes = torch.clamp(boxes, 0, old_img_size)
  231. # rescale box
  232. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  233. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  234. # refine tgt
  235. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  236. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  237. keep = (min_tgt_size >= 1)
  238. tgt["boxes"] = boxes[keep]
  239. tgt["labels"] = labels[keep]
  240. return images, targets, new_img_size
  241. def check_second_stage(self):
  242. # set second stage
  243. print('============== Second stage of Training ==============')
  244. self.second_stage = True
  245. self.heavy_eval = True
  246. # close mosaic augmentation
  247. if self.train_loader.dataset.mosaic_prob > 0.:
  248. print(' - Close < Mosaic Augmentation > ...')
  249. self.train_loader.dataset.mosaic_prob = 0.
  250. # close mixup augmentation
  251. if self.train_loader.dataset.mixup_prob > 0.:
  252. print(' - Close < Mixup Augmentation > ...')
  253. self.train_loader.dataset.mixup_prob = 0.
  254. # close copy-paste augmentation
  255. if self.train_loader.dataset.copy_paste > 0.:
  256. print(' - Close < Copy-paste Augmentation > ...')
  257. self.train_loader.dataset.copy_paste = 0.
  258. class RTDetrTrainer(object):
  259. def __init__(self,
  260. # Basic parameters
  261. args,
  262. cfg,
  263. device,
  264. # Model parameters
  265. model,
  266. model_ema,
  267. criterion,
  268. # Data parameters
  269. train_transform,
  270. val_transform,
  271. dataset,
  272. train_loader,
  273. evaluator,
  274. ):
  275. # ------------------- basic parameters -------------------
  276. self.args = args
  277. self.cfg = cfg
  278. self.epoch = 0
  279. self.best_map = -1.
  280. self.device = device
  281. self.criterion = criterion
  282. self.heavy_eval = False
  283. self.model_ema = model_ema
  284. # path to save model
  285. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  286. os.makedirs(self.path_to_save, exist_ok=True)
  287. # ---------------------------- Transform ----------------------------
  288. self.train_transform = train_transform
  289. self.val_transform = val_transform
  290. # ---------------------------- Dataset & Dataloader ----------------------------
  291. self.dataset = dataset
  292. self.train_loader = train_loader
  293. # ---------------------------- Evaluator ----------------------------
  294. self.evaluator = evaluator
  295. # ---------------------------- Build Grad. Scaler ----------------------------
  296. self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
  297. # ---------------------------- Build Optimizer ----------------------------
  298. self.grad_accumulate = max(16 // args.batch_size, 1)
  299. cfg.base_lr = cfg.per_image_lr * args.batch_size * self.grad_accumulate
  300. cfg.min_lr = cfg.base_lr * cfg.min_lr_ratio
  301. self.optimizer, self.start_epoch = build_rtdetr_optimizer(cfg, model, args.resume)
  302. # ---------------------------- Build LR Scheduler ----------------------------
  303. self.wp_lr_scheduler = LinearWarmUpLrScheduler(cfg.base_lr, wp_iter=cfg.warmup_iters)
  304. self.lr_scheduler = build_lr_scheduler(cfg, self.optimizer, args.resume)
  305. def train(self, model):
  306. for epoch in range(self.start_epoch, self.cfg.max_epoch):
  307. if self.args.distributed:
  308. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  309. # train one epoch
  310. self.epoch = epoch
  311. self.train_one_epoch(model)
  312. # LR Scheduler
  313. self.lr_scheduler.step()
  314. # eval one epoch
  315. if self.heavy_eval:
  316. model_eval = model.module if self.args.distributed else model
  317. self.eval(model_eval)
  318. else:
  319. model_eval = model.module if self.args.distributed else model
  320. if (epoch % self.cfg.eval_epoch) == 0 or (epoch == self.cfg.max_epoch - 1):
  321. self.eval(model_eval)
  322. if self.args.debug:
  323. print("For debug mode, we only train 1 epoch")
  324. break
  325. def eval(self, model):
  326. # set eval mode
  327. model.eval()
  328. model_eval = model if self.model_ema is None else self.model_ema.ema
  329. if distributed_utils.is_main_process():
  330. # check evaluator
  331. if self.evaluator is None:
  332. print('No evaluator ... save model and go on training.')
  333. print('Saving state, epoch: {}'.format(self.epoch))
  334. weight_name = '{}_no_eval.pth'.format(self.args.model)
  335. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  336. torch.save({'model': model_eval.state_dict(),
  337. 'mAP': -1.,
  338. 'optimizer': self.optimizer.state_dict(),
  339. 'lr_scheduler': self.lr_scheduler.state_dict(),
  340. 'epoch': self.epoch,
  341. 'args': self.args},
  342. checkpoint_path)
  343. else:
  344. print('eval ...')
  345. # evaluate
  346. with torch.no_grad():
  347. self.evaluator.evaluate(model_eval)
  348. # save model
  349. cur_map = self.evaluator.map
  350. if cur_map > self.best_map:
  351. # update best-map
  352. self.best_map = cur_map
  353. # save model
  354. print('Saving state, epoch:', self.epoch)
  355. weight_name = '{}_best.pth'.format(self.args.model)
  356. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  357. torch.save({'model': model_eval.state_dict(),
  358. 'mAP': round(self.best_map*100, 1),
  359. 'optimizer': self.optimizer.state_dict(),
  360. 'lr_scheduler': self.lr_scheduler.state_dict(),
  361. 'epoch': self.epoch,
  362. 'args': self.args},
  363. checkpoint_path)
  364. if self.args.distributed:
  365. # wait for all processes to synchronize
  366. dist.barrier()
  367. # set train mode.
  368. model.train()
  369. def train_one_epoch(self, model):
  370. metric_logger = MetricLogger(delimiter=" ")
  371. metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
  372. metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
  373. metric_logger.add_meter('grad_norm', SmoothedValue(window_size=1, fmt='{value:.1f}'))
  374. header = 'Epoch: [{} / {}]'.format(self.epoch, self.cfg.max_epoch)
  375. epoch_size = len(self.train_loader)
  376. print_freq = 10
  377. # basic parameters
  378. epoch_size = len(self.train_loader)
  379. img_size = self.cfg.train_img_size
  380. nw = self.cfg.warmup_iters
  381. lr_warmup_stage = True
  382. # Train one epoch
  383. for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
  384. ni = iter_i + self.epoch * epoch_size
  385. # WarmUp
  386. if ni < nw and lr_warmup_stage:
  387. self.wp_lr_scheduler(ni, self.optimizer)
  388. elif ni == nw and lr_warmup_stage:
  389. print('Warmup stage is over.')
  390. lr_warmup_stage = False
  391. self.wp_lr_scheduler.set_lr(self.optimizer, self.cfg.base_lr)
  392. # To device
  393. images = images.to(self.device, non_blocking=True).float()
  394. for tgt in targets:
  395. tgt['boxes'] = tgt['boxes'].to(self.device)
  396. tgt['labels'] = tgt['labels'].to(self.device)
  397. # Multi scale
  398. images, targets, img_size = self.rescale_image_targets(
  399. images, targets, self.cfg.max_stride, self.cfg.multi_scale)
  400. # Visualize train targets
  401. if self.args.vis_tgt:
  402. vis_data(images,
  403. targets,
  404. self.cfg.num_classes,
  405. self.cfg.normalize_coords,
  406. self.train_transform.color_format,
  407. self.cfg.pixel_mean,
  408. self.cfg.pixel_std,
  409. self.cfg.box_format)
  410. # Inference
  411. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  412. outputs = model(images, targets)
  413. loss_dict = self.criterion(outputs, targets)
  414. losses = sum(loss_dict.values())
  415. losses /= self.grad_accumulate
  416. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  417. # Backward
  418. self.scaler.scale(losses).backward()
  419. # Gradient clip
  420. grad_norm = None
  421. if self.cfg.clip_max_norm > 0:
  422. self.scaler.unscale_(self.optimizer)
  423. grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.cfg.clip_max_norm)
  424. # Optimize
  425. if (iter_i + 1) % self.grad_accumulate == 0:
  426. self.scaler.step(self.optimizer)
  427. self.scaler.update()
  428. self.optimizer.zero_grad()
  429. # ModelEMA
  430. if self.model_ema is not None:
  431. self.model_ema.update(model)
  432. # Update log
  433. metric_logger.update(loss=losses.item(), **loss_dict_reduced)
  434. metric_logger.update(lr=self.optimizer.param_groups[0]["lr"])
  435. metric_logger.update(grad_norm=grad_norm)
  436. metric_logger.update(size=img_size)
  437. if self.args.debug:
  438. print("For debug mode, we only train 1 iteration")
  439. break
  440. def rescale_image_targets(self, images, targets, max_stride, multi_scale_range=[0.5, 1.5]):
  441. """
  442. Deployed for Multi scale trick.
  443. """
  444. # During training phase, the shape of input image is square.
  445. old_img_size = images.shape[-1]
  446. min_img_size = old_img_size * multi_scale_range[0]
  447. max_img_size = old_img_size * multi_scale_range[1]
  448. # Choose a new image size
  449. new_img_size = random.randrange(min_img_size, max_img_size + max_stride, max_stride)
  450. # Resize
  451. if new_img_size != old_img_size:
  452. # interpolate
  453. images = torch.nn.functional.interpolate(
  454. input=images,
  455. size=new_img_size,
  456. mode='bilinear',
  457. align_corners=False)
  458. return images, targets, new_img_size
  459. # Build Trainer
  460. def build_trainer(args, cfg, device, model, model_ema, criterion, train_transform, val_transform, dataset, train_loader, evaluator):
  461. # ----------------------- Det trainers -----------------------
  462. if cfg.trainer == 'yolo':
  463. return YoloTrainer(args, cfg, device, model, model_ema, criterion, train_transform, val_transform, dataset, train_loader, evaluator)
  464. elif cfg.trainer == 'rtdetr':
  465. return RTDetrTrainer(args, cfg, device, model, model_ema, criterion, train_transform, val_transform, dataset, train_loader, evaluator)
  466. else:
  467. raise NotImplementedError(cfg.trainer)