yolov10.py 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166
  1. # --------------- Torch components ---------------
  2. import copy
  3. import torch
  4. import torch.nn as nn
  5. # --------------- Model components ---------------
  6. from .yolov10_backbone import Yolov10Backbone
  7. from .yolov10_pafpn import Yolov10PaFPN
  8. from .yolov10_head import Yolov10DetHead
  9. from .yolov10_pred import Yolov10DetPredLayer
  10. # --------------- External components ---------------
  11. from utils.misc import multiclass_nms
  12. # YOLOv10
  13. class Yolov10(nn.Module):
  14. def __init__(self,
  15. cfg,
  16. is_val = False,
  17. ) -> None:
  18. super(Yolov10, self).__init__()
  19. # ---------------------- Basic setting ----------------------
  20. self.cfg = cfg
  21. self.num_classes = cfg.num_classes
  22. ## Post-process parameters
  23. self.topk_candidates = cfg.val_topk if is_val else cfg.test_topk
  24. self.conf_thresh = cfg.val_conf_thresh if is_val else cfg.test_conf_thresh
  25. self.nms_thresh = cfg.val_nms_thresh if is_val else cfg.test_nms_thresh
  26. self.no_multi_labels = False if is_val else True
  27. # ---------------------- Network Parameters ----------------------
  28. ## Backbone
  29. self.backbone = Yolov10Backbone(cfg)
  30. self.pyramid_feat_dims = self.backbone.feat_dims[-3:]
  31. ## PaFPN
  32. self.fpn = Yolov10PaFPN(cfg, self.backbone.feat_dims)
  33. ## Head
  34. self.head_o2m = Yolov10DetHead(cfg, self.fpn.out_dims)
  35. self.pred_o2m = Yolov10DetPredLayer(cfg, self.head.cls_head_dim, self.head.reg_head_dim)
  36. self.head_o2o = copy.deepcopy(self.head_o2m)
  37. self.pred_o2o = copy.deepcopy(self.pred_o2m)
  38. def post_process(self, cls_preds, box_preds):
  39. """
  40. We process predictions at each scale hierarchically
  41. Input:
  42. cls_preds: List[torch.Tensor] -> [[B, M, C], ...], B=1
  43. box_preds: List[torch.Tensor] -> [[B, M, 4], ...], B=1
  44. Output:
  45. bboxes: np.array -> [N, 4]
  46. scores: np.array -> [N,]
  47. labels: np.array -> [N,]
  48. """
  49. all_scores = []
  50. all_labels = []
  51. all_bboxes = []
  52. for cls_pred_i, box_pred_i in zip(cls_preds, box_preds):
  53. cls_pred_i = cls_pred_i[0]
  54. box_pred_i = box_pred_i[0]
  55. if self.no_multi_labels:
  56. # [M,]
  57. scores, labels = torch.max(cls_pred_i.sigmoid(), dim=1)
  58. # Keep top k top scoring indices only.
  59. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  60. # topk candidates
  61. predicted_prob, topk_idxs = scores.sort(descending=True)
  62. topk_scores = predicted_prob[:num_topk]
  63. topk_idxs = topk_idxs[:num_topk]
  64. # filter out the proposals with low confidence score
  65. keep_idxs = topk_scores > self.conf_thresh
  66. scores = topk_scores[keep_idxs]
  67. topk_idxs = topk_idxs[keep_idxs]
  68. labels = labels[topk_idxs]
  69. bboxes = box_pred_i[topk_idxs]
  70. else:
  71. # [M, C] -> [MC,]
  72. scores_i = cls_pred_i.sigmoid().flatten()
  73. # Keep top k top scoring indices only.
  74. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  75. # torch.sort is actually faster than .topk (at least on GPUs)
  76. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  77. topk_scores = predicted_prob[:num_topk]
  78. topk_idxs = topk_idxs[:num_topk]
  79. # filter out the proposals with low confidence score
  80. keep_idxs = topk_scores > self.conf_thresh
  81. scores = topk_scores[keep_idxs]
  82. topk_idxs = topk_idxs[keep_idxs]
  83. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  84. labels = topk_idxs % self.num_classes
  85. bboxes = box_pred_i[anchor_idxs]
  86. all_scores.append(scores)
  87. all_labels.append(labels)
  88. all_bboxes.append(bboxes)
  89. scores = torch.cat(all_scores, dim=0)
  90. labels = torch.cat(all_labels, dim=0)
  91. bboxes = torch.cat(all_bboxes, dim=0)
  92. # to cpu & numpy
  93. scores = scores.cpu().numpy()
  94. labels = labels.cpu().numpy()
  95. bboxes = bboxes.cpu().numpy()
  96. # nms
  97. scores, labels, bboxes = multiclass_nms(
  98. scores, labels, bboxes, self.nms_thresh, self.num_classes)
  99. # keep top-300 results
  100. scores = scores[:300]
  101. bboxes = bboxes[:300]
  102. labels = labels[:300]
  103. return bboxes, scores, labels
  104. def forward(self, x):
  105. # ---------------- Backbone ----------------
  106. pyramid_feats = self.backbone(x)
  107. # ---------------- PaFPN ----------------
  108. pyramid_feats = self.fpn(pyramid_feats)
  109. # ---------------- Heads (one-to-one) ----------------
  110. pyramid_feats_detach = [feat.detach() for feat in pyramid_feats]
  111. cls_feats, reg_feats = self.head_o2o(pyramid_feats_detach)
  112. outputs_o2o = self.pred_o2o(cls_feats, reg_feats)
  113. outputs_o2o['image_size'] = [x.shape[2], x.shape[3]]
  114. if not self.training:
  115. all_cls_preds = outputs_o2o['pred_cls']
  116. all_box_preds = outputs_o2o['pred_box']
  117. # post process
  118. bboxes, scores, labels = self.post_process(all_cls_preds, all_box_preds)
  119. outputs = {
  120. "scores": scores,
  121. "labels": labels,
  122. "bboxes": bboxes
  123. }
  124. else:
  125. # ---------------- Heads (one-to-many) ----------------
  126. cls_feats, reg_feats = self.head_o2m(pyramid_feats)
  127. outputs_o2m = self.pred_o2m(cls_feats, reg_feats)
  128. outputs_o2m['image_size'] = [x.shape[2], x.shape[3]]
  129. outputs = {
  130. "outputs_o2o": outputs_o2o,
  131. "outputs_o2m": outputs_o2m,
  132. }
  133. return outputs