| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151 |
- import torch
- import torch.nn.functional as F
- from utils.box_ops import box_iou
- class AlignedOTAMatcher(object):
- """
- This code referenced to https://github.com/open-mmlab/mmyolo/models/task_modules/assigners/batch_dsl_assigner.py
- """
- def __init__(self,
- num_classes,
- soft_center_radius=3.0,
- topk_candidates=13,
- ):
- self.num_classes = num_classes
- self.soft_center_radius = soft_center_radius
- self.topk_candidates = topk_candidates
- @torch.no_grad()
- def __call__(self,
- fpn_strides,
- anchors,
- pred_cls,
- pred_box,
- gt_labels,
- gt_bboxes):
- # [M,]
- strides = torch.cat([torch.ones_like(anchor_i[:, 0]) * stride_i
- for stride_i, anchor_i in zip(fpn_strides, anchors)], dim=-1)
- # List[F, M, 2] -> [M, 2]
- num_gt = len(gt_labels)
- anchors = torch.cat(anchors, dim=0)
- # check gt
- if num_gt == 0 or gt_bboxes.max().item() == 0.:
- return {
- 'assigned_labels': gt_labels.new_full(pred_cls[..., 0].shape, self.num_classes).long(),
- 'assigned_bboxes': gt_bboxes.new_full(pred_box.shape, 0),
- 'assign_metrics': gt_bboxes.new_full(pred_cls[..., 0].shape, 0),
- }
-
- # get inside points: [N, M]
- is_in_gt = self.find_inside_points(gt_bboxes, anchors)
- valid_mask = is_in_gt.sum(dim=0) > 0 # [M,]
- # ----------------------- Soft center prior -----------------------
- gt_center = (gt_bboxes[..., :2] + gt_bboxes[..., 2:]) / 2.0
- distance = (anchors.unsqueeze(0) - gt_center.unsqueeze(1)
- ).pow(2).sum(-1).sqrt() / strides.unsqueeze(0) # [N, M]
- distance = distance * valid_mask.unsqueeze(0)
- soft_center_prior = torch.pow(10, distance - self.soft_center_radius)
- # ----------------------- Regression cost -----------------------
- pair_wise_ious, _ = box_iou(gt_bboxes, pred_box) # [N, M]
- pair_wise_ious_loss = -torch.log(pair_wise_ious + 1e-8) * 3.0
- # ----------------------- Classification cost -----------------------
- ## select the predicted scores corresponded to the gt_labels
- pairwise_pred_scores = pred_cls.permute(1, 0) # [M, C] -> [C, M]
- pairwise_pred_scores = pairwise_pred_scores[gt_labels.long(), :].float() # [N, M]
- ## scale factor
- scale_factor = (pair_wise_ious - pairwise_pred_scores.sigmoid()).abs().pow(2.0)
- ## cls cost
- pair_wise_cls_loss = F.binary_cross_entropy_with_logits(
- pairwise_pred_scores, pair_wise_ious,
- reduction="none") * scale_factor # [N, M]
-
- del pairwise_pred_scores
- ## foreground cost matrix
- cost_matrix = pair_wise_cls_loss + pair_wise_ious_loss + soft_center_prior
- max_pad_value = torch.ones_like(cost_matrix) * 1e9
- cost_matrix = torch.where(valid_mask[None].repeat(num_gt, 1), # [N, M]
- cost_matrix, max_pad_value)
- # ----------------------- Dynamic label assignment -----------------------
- matched_pred_ious, matched_gt_inds, fg_mask_inboxes = self.dynamic_k_matching(
- cost_matrix, pair_wise_ious, num_gt)
- del pair_wise_cls_loss, cost_matrix, pair_wise_ious, pair_wise_ious_loss
- # ----------------------- Process assigned labels -----------------------
- assigned_labels = gt_labels.new_full(pred_cls[..., 0].shape,
- self.num_classes) # [M,]
- assigned_labels[fg_mask_inboxes] = gt_labels[matched_gt_inds].squeeze(-1)
- assigned_labels = assigned_labels.long() # [M,]
- assigned_bboxes = gt_bboxes.new_full(pred_box.shape, 0) # [M, 4]
- assigned_bboxes[fg_mask_inboxes] = gt_bboxes[matched_gt_inds] # [M, 4]
- assign_metrics = gt_bboxes.new_full(pred_cls[..., 0].shape, 0) # [M,]
- assign_metrics[fg_mask_inboxes] = matched_pred_ious # [M,]
- assigned_dict = dict(
- assigned_labels=assigned_labels,
- assigned_bboxes=assigned_bboxes,
- assign_metrics=assign_metrics
- )
-
- return assigned_dict
- def find_inside_points(self, gt_bboxes, anchors):
- """
- gt_bboxes: Tensor -> [N, 2]
- anchors: Tensor -> [M, 2]
- """
- num_anchors = anchors.shape[0]
- num_gt = gt_bboxes.shape[0]
- anchors_expand = anchors.unsqueeze(0).repeat(num_gt, 1, 1) # [N, M, 2]
- gt_bboxes_expand = gt_bboxes.unsqueeze(1).repeat(1, num_anchors, 1) # [N, M, 4]
- # offset
- lt = anchors_expand - gt_bboxes_expand[..., :2]
- rb = gt_bboxes_expand[..., 2:] - anchors_expand
- bbox_deltas = torch.cat([lt, rb], dim=-1)
- is_in_gts = bbox_deltas.min(dim=-1).values > 0
- return is_in_gts
-
- def dynamic_k_matching(self, cost_matrix, pairwise_ious, num_gt):
- matching_matrix = torch.zeros_like(cost_matrix, dtype=torch.uint8)
- # select candidate topk ious for dynamic-k calculation
- candidate_topk = min(self.topk_candidates, pairwise_ious.size(1))
- topk_ious, _ = torch.topk(pairwise_ious, candidate_topk, dim=1)
- # calculate dynamic k for each gt
- dynamic_ks = torch.clamp(topk_ious.sum(1).int(), min=1)
- # sorting the batch cost matirx is faster than topk
- _, sorted_indices = torch.sort(cost_matrix, dim=1)
- for gt_idx in range(num_gt):
- topk_ids = sorted_indices[gt_idx, :dynamic_ks[gt_idx]]
- matching_matrix[gt_idx, :][topk_ids] = 1
- del topk_ious, dynamic_ks, topk_ids
- prior_match_gt_mask = matching_matrix.sum(0) > 1
- if prior_match_gt_mask.sum() > 0:
- cost_min, cost_argmin = torch.min(
- cost_matrix[:, prior_match_gt_mask], dim=0)
- matching_matrix[:, prior_match_gt_mask] *= 0
- matching_matrix[cost_argmin, prior_match_gt_mask] = 1
- # get foreground mask inside box and center prior
- fg_mask_inboxes = matching_matrix.sum(0) > 0
- matched_pred_ious = (matching_matrix *
- pairwise_ious).sum(0)[fg_mask_inboxes]
- matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
- return matched_pred_ious, matched_gt_inds, fg_mask_inboxes
|