criterion.py 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171
  1. import torch
  2. import torch.nn as nn
  3. import torch.nn.functional as F
  4. from utils.box_ops import get_ious
  5. from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
  6. from .matcher import AlignedOTAMatcher
  7. class SetCriterion(nn.Module):
  8. def __init__(self, cfg):
  9. super().__init__()
  10. # ------------- Basic parameters -------------
  11. self.cfg = cfg
  12. self.num_classes = cfg.num_classes
  13. # ------------- Focal loss -------------
  14. self.alpha = cfg.focal_loss_alpha
  15. self.gamma = cfg.focal_loss_gamma
  16. # ------------- Loss weight -------------
  17. self.weight_dict = {'loss_cls': cfg.loss_cls_weight,
  18. 'loss_reg': cfg.loss_reg_weight}
  19. # ------------- Matcher & Loss weight -------------
  20. self.matcher_cfg = cfg.matcher_hpy
  21. self.matcher = AlignedOTAMatcher(cfg.num_classes,
  22. cfg.matcher_hpy['soft_center_radius'],
  23. cfg.matcher_hpy['topk_candidates'],
  24. )
  25. def loss_labels(self, pred_cls, target, beta=2.0, num_boxes=1.0):
  26. # Quality FocalLoss
  27. """
  28. pred_cls: (torch.Tensor): [N, C]。
  29. target: (tuple([torch.Tensor], [torch.Tensor])): label -> (N,), score -> (N)
  30. """
  31. label, score = target
  32. pred_sigmoid = pred_cls.sigmoid()
  33. scale_factor = pred_sigmoid
  34. zerolabel = scale_factor.new_zeros(pred_cls.shape)
  35. ce_loss = F.binary_cross_entropy_with_logits(
  36. pred_cls, zerolabel, reduction='none') * scale_factor.pow(beta)
  37. bg_class_ind = pred_cls.shape[-1]
  38. pos = ((label >= 0) & (label < bg_class_ind)).nonzero().squeeze(1)
  39. if pos.shape[0] > 0:
  40. pos_label = label[pos].long()
  41. scale_factor = score[pos] - pred_sigmoid[pos, pos_label]
  42. ce_loss[pos, pos_label] = F.binary_cross_entropy_with_logits(
  43. pred_cls[pos, pos_label], score[pos],
  44. reduction='none') * scale_factor.abs().pow(beta)
  45. return ce_loss.sum() / num_boxes
  46. def loss_bboxes(self, pred_box, gt_box, num_boxes=1.0, box_weight=None):
  47. ious = get_ious(pred_box, gt_box, box_mode="xyxy", iou_type='giou')
  48. loss_box = 1.0 - ious
  49. if box_weight is not None:
  50. loss_box = loss_box.squeeze(-1) * box_weight
  51. return loss_box.sum() / num_boxes
  52. def compute_loss(self, outputs, targets):
  53. """
  54. outputs['pred_cls']: (Tensor) [B, M, C]
  55. outputs['pred_reg']: (Tensor) [B, M, 4]
  56. outputs['pred_box']: (Tensor) [B, M, 4]
  57. outputs['strides']: (List) [8, 16, 32, ...] stride of the model output
  58. targets: (List) [dict{'boxes': [...],
  59. 'labels': [...],
  60. 'orig_size': ...}, ...]
  61. """
  62. # -------------------- Pre-process --------------------
  63. bs = outputs['pred_cls'][0].shape[0]
  64. device = outputs['pred_cls'][0].device
  65. fpn_strides = outputs['strides']
  66. anchors = outputs['anchors']
  67. # preds: [B, M, C]
  68. cls_preds = torch.cat(outputs['pred_cls'], dim=1)
  69. box_preds = torch.cat(outputs['pred_box'], dim=1)
  70. masks = ~torch.cat(outputs['mask'], dim=1).view(-1)
  71. # -------------------- Label Assignment --------------------
  72. cls_targets = []
  73. box_targets = []
  74. assign_metrics = []
  75. for batch_idx in range(bs):
  76. tgt_labels = targets[batch_idx]["labels"].to(device) # [N,]
  77. tgt_bboxes = targets[batch_idx]["boxes"].to(device) # [N, 4]
  78. # refine target
  79. tgt_boxes_wh = tgt_bboxes[..., 2:] - tgt_bboxes[..., :2]
  80. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  81. keep = (min_tgt_size >= 8)
  82. tgt_bboxes = tgt_bboxes[keep]
  83. tgt_labels = tgt_labels[keep]
  84. # label assignment
  85. assigned_result = self.matcher(fpn_strides=fpn_strides,
  86. anchors=anchors,
  87. pred_cls=cls_preds[batch_idx].detach(),
  88. pred_box=box_preds[batch_idx].detach(),
  89. gt_labels=tgt_labels,
  90. gt_bboxes=tgt_bboxes
  91. )
  92. cls_targets.append(assigned_result['assigned_labels'])
  93. box_targets.append(assigned_result['assigned_bboxes'])
  94. assign_metrics.append(assigned_result['assign_metrics'])
  95. # List[B, M, C] -> Tensor[BM, C]
  96. cls_targets = torch.cat(cls_targets, dim=0)
  97. box_targets = torch.cat(box_targets, dim=0)
  98. assign_metrics = torch.cat(assign_metrics, dim=0)
  99. valid_idxs = (cls_targets >= 0) & masks
  100. foreground_idxs = (cls_targets >= 0) & (cls_targets != self.num_classes)
  101. num_fgs = assign_metrics.sum()
  102. if is_dist_avail_and_initialized():
  103. torch.distributed.all_reduce(num_fgs)
  104. num_fgs = torch.clamp(num_fgs / get_world_size(), min=1).item()
  105. # -------------------- Classification loss --------------------
  106. cls_preds = cls_preds.view(-1, self.num_classes)[valid_idxs]
  107. qfl_targets = (cls_targets[valid_idxs], assign_metrics[valid_idxs])
  108. loss_labels = self.loss_labels(cls_preds, qfl_targets, 2.0, num_fgs)
  109. # -------------------- Regression loss --------------------
  110. box_preds_pos = box_preds.view(-1, 4)[foreground_idxs]
  111. box_targets_pos = box_targets[foreground_idxs]
  112. box_weight = assign_metrics[foreground_idxs]
  113. loss_bboxes = self.loss_bboxes(box_preds_pos, box_targets_pos, num_fgs, box_weight)
  114. total_loss = loss_labels * self.weight_dict["loss_cls"] + \
  115. loss_bboxes * self.weight_dict["loss_reg"]
  116. loss_dict = dict(
  117. loss_cls = loss_labels,
  118. loss_reg = loss_bboxes,
  119. losses = total_loss,
  120. )
  121. return loss_dict
  122. def forward(self, outputs, targets):
  123. """
  124. outputs['pred_cls']: (Tensor) [B, M, C]
  125. outputs['pred_reg']: (Tensor) [B, M, 4]
  126. outputs['pred_box']: (Tensor) [B, M, 4]
  127. outputs['strides']: (List) [8, 16, 32, ...] stride of the model output
  128. targets: (List) [dict{'boxes': [...],
  129. 'labels': [...],
  130. 'orig_size': ...}, ...]
  131. """
  132. self.matcher.topk_candidates = self.cfg.matcher_hpy['topk_candidates']
  133. o2m_loss_dict = self.compute_loss(outputs["outputs_o2m"], targets)
  134. self.matcher.topk_candidates = 1
  135. o2o_loss_dict = self.compute_loss(outputs["outputs_o2o"], targets)
  136. loss_dict = {}
  137. loss_dict["losses"] = o2o_loss_dict["losses"] + o2m_loss_dict["losses"]
  138. for k in o2m_loss_dict:
  139. loss_dict['o2m_' + k] = o2m_loss_dict[k]
  140. for k in o2o_loss_dict:
  141. loss_dict['o2o_' + k] = o2o_loss_dict[k]
  142. return loss_dict
  143. if __name__ == "__main__":
  144. pass