| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 |
- import torch
- import torch.nn as nn
- # -------------------- Detection Pred Layer --------------------
- ## Single-level pred layer
- class Yolov1DetPredLayer(nn.Module):
- def __init__(self, cfg):
- super().__init__()
- # --------- Basic Parameters ----------
- self.stride = cfg.out_stride
- self.cls_dim = cfg.head_dim
- self.reg_dim = cfg.head_dim
- self.num_classes = cfg.num_classes
- # --------- Network Parameters ----------
- self.obj_pred = nn.Conv2d(self.cls_dim, 1, kernel_size=1)
- self.cls_pred = nn.Conv2d(self.cls_dim, self.num_classes, kernel_size=1)
- self.reg_pred = nn.Conv2d(self.reg_dim, 4, kernel_size=1)
- self.init_bias()
-
- def init_bias(self):
- # Init bias
- init_prob = 0.01
- bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
- # obj pred
- b = self.obj_pred.bias.view(1, -1)
- b.data.fill_(bias_value.item())
- self.obj_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
- # cls pred
- b = self.cls_pred.bias.view(1, -1)
- b.data.fill_(bias_value.item())
- self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
- # reg pred
- b = self.reg_pred.bias.view(-1, )
- b.data.fill_(1.0)
- self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
- w = self.reg_pred.weight
- w.data.fill_(0.)
- self.reg_pred.weight = torch.nn.Parameter(w, requires_grad=True)
- def generate_anchors(self, fmp_size):
- """
- fmp_size: (List) [H, W]
- """
- # 特征图的宽和高
- fmp_h, fmp_w = fmp_size
- # 生成网格的x坐标和y坐标
- anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
- # 将xy两部分的坐标拼起来:[H, W, 2]
- anchors = torch.stack([anchor_x, anchor_y], dim=-1).float()
-
- # [H, W, 2] -> [HW, 2]
- anchors = anchors.view(-1, 2)
- return anchors
-
- def forward(self, cls_feat, reg_feat):
- # 预测层
- obj_pred = self.obj_pred(cls_feat)
- cls_pred = self.cls_pred(cls_feat)
- reg_pred = self.reg_pred(reg_feat)
- # 生成网格坐标
- B, _, H, W = cls_pred.size()
- fmp_size = [H, W]
- anchors = self.generate_anchors(fmp_size)
- anchors = anchors.to(cls_pred.device)
- # 对 pred 的size做一些view调整,便于后续的处理
- # [B, C, H, W] -> [B, H, W, C] -> [B, H*W, C]
- obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
- cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
- reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
-
- # 解算边界框坐标
- cxcy_pred = (torch.sigmoid(reg_pred[..., :2]) + anchors[..., :2]) * self.stride
- bwbh_pred = torch.exp(reg_pred[..., 2:]) * self.stride
- pred_x1y1 = cxcy_pred - bwbh_pred * 0.5
- pred_x2y2 = cxcy_pred + bwbh_pred * 0.5
- box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
- # output dict
- outputs = {"pred_obj": obj_pred, # (torch.Tensor) [B, M, 1]
- "pred_cls": cls_pred, # (torch.Tensor) [B, M, C]
- "pred_reg": reg_pred, # (torch.Tensor) [B, M, 4]
- "pred_box": box_pred, # (torch.Tensor) [B, M, 4]
- "anchors" : anchors, # (torch.Tensor) [M, 2]
- "fmp_size": fmp_size,
- "stride" : self.stride, # (Int)
- }
- return outputs
- if __name__=='__main__':
- from thop import profile
- # Model config
-
- # YOLOv1 configuration
- class Yolov1BaseConfig(object):
- def __init__(self) -> None:
- # ---------------- Model config ----------------
- self.out_stride = 32
- self.max_stride = 32
- ## Head
- self.head_dim = 512
- cfg = Yolov1BaseConfig()
- cfg.num_classes = 20
- # Build a pred layer
- model = Yolov1DetPredLayer(cfg)
- # Randomly generate a input data
- cls_feat = torch.randn(2, cfg.head_dim, 20, 20)
- reg_feat = torch.randn(2, cfg.head_dim, 20, 20)
- # Inference
- output = model(cls_feat, reg_feat)
- print('====== Pred output ======= ')
- for k in output:
- if isinstance(output[k], torch.Tensor):
- print("-{}: ".format(k), output[k].shape)
- else:
- print("-{}: ".format(k), output[k])
- cls_feat = torch.randn(1, cfg.head_dim, 20, 20)
- reg_feat = torch.randn(1, cfg.head_dim, 20, 20)
- flops, params = profile(model, inputs=(cls_feat, reg_feat, ), verbose=False)
- print('============== FLOPs & Params ================')
- print(' - FLOPs : {:.2f} G'.format(flops / 1e9 * 2))
- print(' - Params : {:.2f} M'.format(params / 1e6))
|