yolov5_af_pred.py 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142
  1. import torch
  2. import torch.nn as nn
  3. from typing import List
  4. # -------------------- Detection Pred Layer --------------------
  5. ## Single-level pred layer
  6. class AFDetPredLayer(nn.Module):
  7. def __init__(self,
  8. cls_dim :int,
  9. reg_dim :int,
  10. stride :int,
  11. num_classes :int,
  12. ):
  13. super().__init__()
  14. # --------- Basic Parameters ----------
  15. self.stride = stride
  16. self.cls_dim = cls_dim
  17. self.reg_dim = reg_dim
  18. self.num_classes = num_classes
  19. # --------- Network Parameters ----------
  20. self.obj_pred = nn.Conv2d(self.cls_dim, 1, kernel_size=1)
  21. self.cls_pred = nn.Conv2d(self.cls_dim, num_classes, kernel_size=1)
  22. self.reg_pred = nn.Conv2d(self.reg_dim, 4, kernel_size=1)
  23. self.init_bias()
  24. def init_bias(self):
  25. # Init bias
  26. init_prob = 0.01
  27. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  28. # obj pred
  29. b = self.obj_pred.bias.view(1, -1)
  30. b.data.fill_(bias_value.item())
  31. self.obj_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  32. # cls pred
  33. b = self.cls_pred.bias.view(1, -1)
  34. b.data.fill_(bias_value.item())
  35. self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  36. # reg pred
  37. b = self.reg_pred.bias.view(-1, )
  38. b.data.fill_(1.0)
  39. self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  40. def generate_anchors(self, fmp_size):
  41. """
  42. fmp_size: (List) [H, W]
  43. """
  44. fmp_h, fmp_w = fmp_size
  45. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  46. # [H, W, 2] -> [HW, 2]
  47. anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  48. anchors = anchors + 0.5
  49. anchors = anchors * self.stride
  50. return anchors
  51. def forward(self, cls_feat, reg_feat):
  52. # 预测层
  53. obj_pred = self.obj_pred(reg_feat)
  54. cls_pred = self.cls_pred(cls_feat)
  55. reg_pred = self.reg_pred(reg_feat)
  56. # 生成网格坐标
  57. B, _, H, W = cls_pred.size()
  58. fmp_size = [H, W]
  59. anchors = self.generate_anchors(fmp_size)
  60. anchors = anchors.to(cls_pred.device)
  61. # 对 pred 的size做一些view调整,便于后续的处理
  62. # [B, C, H, W] -> [B, H, W, C] -> [B, H*W, C]
  63. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1)
  64. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  65. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  66. # 解算边界框坐标
  67. cxcy_pred = reg_pred[..., :2] * self.stride + anchors
  68. bwbh_pred = torch.exp(reg_pred[..., 2:]) * self.stride
  69. pred_x1y1 = cxcy_pred - bwbh_pred * 0.5
  70. pred_x2y2 = cxcy_pred + bwbh_pred * 0.5
  71. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  72. # output dict
  73. outputs = {"pred_obj": obj_pred, # (torch.Tensor) [B, M, 1]
  74. "pred_cls": cls_pred, # (torch.Tensor) [B, M, C]
  75. "pred_reg": reg_pred, # (torch.Tensor) [B, M, 4]
  76. "pred_box": box_pred, # (torch.Tensor) [B, M, 4]
  77. "anchors" : anchors, # (torch.Tensor) [M, 2]
  78. "fmp_size": fmp_size,
  79. "stride" : self.stride, # (Int)
  80. }
  81. return outputs
  82. ## Multi-level pred layer
  83. class Yolov5AFDetPredLayer(nn.Module):
  84. def __init__(self, cfg):
  85. super().__init__()
  86. # --------- Basic Parameters ----------
  87. self.cfg = cfg
  88. # ----------- Network Parameters -----------
  89. ## pred layers
  90. self.multi_level_preds = nn.ModuleList(
  91. [AFDetPredLayer(cls_dim = round(cfg.head_dim * cfg.width),
  92. reg_dim = round(cfg.head_dim * cfg.width),
  93. stride = cfg.out_stride[level],
  94. num_classes = cfg.num_classes,)
  95. for level in range(cfg.num_levels)
  96. ])
  97. def forward(self, cls_feats, reg_feats):
  98. all_anchors = []
  99. all_fmp_sizes = []
  100. all_obj_preds = []
  101. all_cls_preds = []
  102. all_reg_preds = []
  103. all_box_preds = []
  104. for level in range(self.cfg.num_levels):
  105. # -------------- Single-level prediction --------------
  106. outputs = self.multi_level_preds[level](cls_feats[level], reg_feats[level])
  107. # collect results
  108. all_obj_preds.append(outputs["pred_obj"])
  109. all_cls_preds.append(outputs["pred_cls"])
  110. all_reg_preds.append(outputs["pred_reg"])
  111. all_box_preds.append(outputs["pred_box"])
  112. all_fmp_sizes.append(outputs["fmp_size"])
  113. all_anchors.append(outputs["anchors"])
  114. # output dict
  115. outputs = {"pred_obj": all_obj_preds, # List(Tensor) [B, M, 1]
  116. "pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  117. "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4*(reg_max)]
  118. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  119. "fmp_sizes": all_fmp_sizes, # List(Tensor) [M, 1]
  120. "anchors": all_anchors, # List(Tensor) [M, 2]
  121. "strides": self.cfg.out_stride, # List(Int) = [8, 16, 32]
  122. }
  123. return outputs