yjh0410 d5f840d13c update 1 rok pred
..
README.md d5f840d13c update 1 rok pred
build.py 366f291021 add yolov5 1 rok pred
loss.py 366f291021 add yolov5 1 rok pred
matcher.py 366f291021 add yolov5 1 rok pred
yolov5.py ef5f0c6d51 update 1 rok pred
yolov5_backbone.py 366f291021 add yolov5 1 rok pred
yolov5_basic.py 366f291021 add yolov5 1 rok pred
yolov5_head.py 366f291021 add yolov5 1 rok pred
yolov5_neck.py 366f291021 add yolov5 1 rok pred
yolov5_pafpn.py 0be5b85fb7 update 1 rok pred
yolov5_pred.py 7637830d0c remove yolov4, since it is similar to yolov5 1 rok pred

README.md

Redesigned YOLOv5:

  • VOC
  • COCO
Model Batch Scale APval
0.5
Weight Logs
YOLOv5-S 1xb16 640 79.0 ckpt log
  • For training, we train redesigned YOLOv5 with 150 epochs on COCO. We also gradient accumulate.
  • For data augmentation, we only use the large scale jitter (LSJ), no Mosaic or Mixup augmentation.
  • For optimizer, we use SGD with momentum 0.937, weight decay 0.0005 and base lr 0.01.
  • For learning rate scheduler, we use linear decay scheduler.

Train YOLOv5

Single GPU

Taking training YOLOv5 on COCO as the example,

python train.py --cuda -d coco --root path/to/coco -m yolov5 -bs 16 -size 640 --wp_epoch 3 --max_epoch 150 --eval_epoch 10 --no_aug_epoch 10 --ema --fp16 --multi_scale 

Multi GPU

Taking training YOLOv5 on COCO as the example,

python -m torch.distributed.run --nproc_per_node=8 train.py --cuda -dist -d coco --root /data/datasets/ -m yolov5 -bs 128 -size 640 --wp_epoch 3 --max_epoch 150  --eval_epoch 10 --no_aug_epoch 20 --ema --fp16 --sybn --multi_scale --save_folder weights/ 

Test YOLOv5

Taking testing YOLOv5 on COCO-val as the example,

python test.py --cuda -d coco --root path/to/coco -m yolov5 --weight path/to/yolov5.pth -size 640 -vt 0.3 --show 

Evaluate YOLOv5

Taking evaluating YOLOv5 on COCO-val as the example,

python eval.py --cuda -d coco-val --root path/to/coco -m yolov5 --weight path/to/yolov5.pth 

Demo

Detect with Image

python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m yolov5 --weight path/to/weight -size 640 -vt 0.3 --show

Detect with Video

python demo.py --mode video --path_to_vid path/to/video --cuda -m yolov5 --weight path/to/weight -size 640 -vt 0.3 --show --gif

Detect with Camera

python demo.py --mode camera --cuda -m yolov5 --weight path/to/weight -size 640 -vt 0.3 --show --gif
Model Batch Scale APval
0.5:0.95
APval
0.5
FLOPs
(G)
Params
(M)
Weight Logs
YOLOv5-S 1xb16 640 27.3 9.0