yolov7.py 9.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233
  1. import torch
  2. import torch.nn as nn
  3. from utils.misc import multiclass_nms
  4. # --------------- Model components ---------------
  5. from .yolov7_backbone import Yolov7Backbone
  6. from .yolov7_neck import SPPFBlockCSP
  7. from .yolov7_pafpn import Yolov7PaFPN
  8. from .yolov7_head import DecoupledHead
  9. # --------------- External components ---------------
  10. from utils.misc import multiclass_nms
  11. class Yolov7(nn.Module):
  12. def __init__(self, cfg, is_val: bool = False) -> None:
  13. super(Yolov7, self).__init__()
  14. # ---------------------- Basic setting ----------------------
  15. self.cfg = cfg
  16. self.num_classes = cfg.num_classes
  17. self.out_stride = cfg.out_stride
  18. self.num_levels = len(cfg.out_stride)
  19. ## Post-process parameters
  20. self.topk_candidates = cfg.val_topk if is_val else cfg.test_topk
  21. self.conf_thresh = cfg.val_conf_thresh if is_val else cfg.test_conf_thresh
  22. self.nms_thresh = cfg.val_nms_thresh if is_val else cfg.test_nms_thresh
  23. self.no_multi_labels = False if is_val else True
  24. # ------------------- Network Structure -------------------
  25. self.backbone = Yolov7Backbone(use_pretrained=cfg.use_pretrained)
  26. self.neck = SPPFBlockCSP(self.backbone.feat_dims[-1], self.backbone.feat_dims[-1] // 2, expand_ratio=0.5)
  27. self.backbone.feat_dims[-1] = self.backbone.feat_dims[-1] // 2
  28. self.fpn = Yolov7PaFPN(self.backbone.feat_dims[-3:], head_dim=cfg.head_dim)
  29. self.non_shared_heads = nn.ModuleList([DecoupledHead(cfg, in_dim)
  30. for in_dim in self.fpn.fpn_out_dims
  31. ])
  32. ## 预测层
  33. self.obj_preds = nn.ModuleList(
  34. [nn.Conv2d(head.reg_head_dim, 1, kernel_size=1)
  35. for head in self.non_shared_heads
  36. ])
  37. self.cls_preds = nn.ModuleList(
  38. [nn.Conv2d(head.cls_head_dim, self.num_classes, kernel_size=1)
  39. for head in self.non_shared_heads
  40. ])
  41. self.reg_preds = nn.ModuleList(
  42. [nn.Conv2d(head.reg_head_dim, 4, kernel_size=1)
  43. for head in self.non_shared_heads
  44. ])
  45. # init pred layers
  46. self.init_weight()
  47. def init_weight(self):
  48. # Init bias
  49. init_prob = 0.01
  50. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  51. # obj pred
  52. for obj_pred in self.obj_preds:
  53. b = obj_pred.bias.view(1, -1)
  54. b.data.fill_(bias_value.item())
  55. obj_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  56. # cls pred
  57. for cls_pred in self.cls_preds:
  58. b = cls_pred.bias.view(1, -1)
  59. b.data.fill_(bias_value.item())
  60. cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  61. # reg pred
  62. for reg_pred in self.reg_preds:
  63. b = reg_pred.bias.view(-1, )
  64. b.data.fill_(1.0)
  65. reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  66. w = reg_pred.weight
  67. w.data.fill_(0.)
  68. reg_pred.weight = torch.nn.Parameter(w, requires_grad=True)
  69. def generate_anchors(self, level, fmp_size):
  70. """
  71. fmp_size: (List) [H, W]
  72. """
  73. # generate grid cells
  74. fmp_h, fmp_w = fmp_size
  75. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  76. # [H, W, 2] -> [HW, 2]
  77. anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  78. anchors += 0.5 # add center offset
  79. anchors *= self.out_stride[level]
  80. return anchors
  81. def post_process(self, obj_preds, cls_preds, box_preds):
  82. """
  83. We process predictions at each scale hierarchically
  84. Input:
  85. obj_preds: List[torch.Tensor] -> [[B, M, 1], ...], B=1
  86. cls_preds: List[torch.Tensor] -> [[B, M, C], ...], B=1
  87. box_preds: List[torch.Tensor] -> [[B, M, 4], ...], B=1
  88. Output:
  89. bboxes: np.array -> [N, 4]
  90. scores: np.array -> [N,]
  91. labels: np.array -> [N,]
  92. """
  93. all_scores = []
  94. all_labels = []
  95. all_bboxes = []
  96. for obj_pred_i, cls_pred_i, box_pred_i in zip(obj_preds, cls_preds, box_preds):
  97. obj_pred_i = obj_pred_i[0]
  98. cls_pred_i = cls_pred_i[0]
  99. box_pred_i = box_pred_i[0]
  100. if self.no_multi_labels:
  101. # [M,]
  102. scores, labels = torch.max(torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid()), dim=1)
  103. # Keep top k top scoring indices only.
  104. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  105. # topk candidates
  106. predicted_prob, topk_idxs = scores.sort(descending=True)
  107. topk_scores = predicted_prob[:num_topk]
  108. topk_idxs = topk_idxs[:num_topk]
  109. # filter out the proposals with low confidence score
  110. keep_idxs = topk_scores > self.conf_thresh
  111. scores = topk_scores[keep_idxs]
  112. topk_idxs = topk_idxs[keep_idxs]
  113. labels = labels[topk_idxs]
  114. bboxes = box_pred_i[topk_idxs]
  115. else:
  116. # [M, C] -> [MC,]
  117. scores_i = torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid()).flatten()
  118. # Keep top k top scoring indices only.
  119. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  120. # torch.sort is actually faster than .topk (at least on GPUs)
  121. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  122. topk_scores = predicted_prob[:num_topk]
  123. topk_idxs = topk_idxs[:num_topk]
  124. # filter out the proposals with low confidence score
  125. keep_idxs = topk_scores > self.conf_thresh
  126. scores = topk_scores[keep_idxs]
  127. topk_idxs = topk_idxs[keep_idxs]
  128. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  129. labels = topk_idxs % self.num_classes
  130. bboxes = box_pred_i[anchor_idxs]
  131. all_scores.append(scores)
  132. all_labels.append(labels)
  133. all_bboxes.append(bboxes)
  134. scores = torch.cat(all_scores, dim=0)
  135. labels = torch.cat(all_labels, dim=0)
  136. bboxes = torch.cat(all_bboxes, dim=0)
  137. # to cpu & numpy
  138. scores = scores.cpu().numpy()
  139. labels = labels.cpu().numpy()
  140. bboxes = bboxes.cpu().numpy()
  141. # nms
  142. scores, labels, bboxes = multiclass_nms(
  143. scores, labels, bboxes, self.nms_thresh, self.num_classes)
  144. return bboxes, scores, labels
  145. def forward(self, x):
  146. bs = x.shape[0]
  147. pyramid_feats = self.backbone(x)
  148. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  149. pyramid_feats = self.fpn(pyramid_feats)
  150. all_anchors = []
  151. all_obj_preds = []
  152. all_cls_preds = []
  153. all_box_preds = []
  154. all_reg_preds = []
  155. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  156. cls_feat, reg_feat = head(feat)
  157. # [B, C, H, W]
  158. obj_pred = self.obj_preds[level](reg_feat)
  159. cls_pred = self.cls_preds[level](cls_feat)
  160. reg_pred = self.reg_preds[level](reg_feat)
  161. B, _, H, W = cls_pred.size()
  162. fmp_size = [H, W]
  163. # generate anchor boxes: [M, 4]
  164. anchors = self.generate_anchors(level, fmp_size)
  165. anchors = anchors.to(x.device)
  166. # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  167. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1)
  168. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  169. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  170. # decode bbox
  171. ctr_pred = reg_pred[..., :2] * self.out_stride[level] + anchors[..., :2]
  172. wh_pred = torch.exp(reg_pred[..., 2:]) * self.out_stride[level]
  173. pred_x1y1 = ctr_pred - wh_pred * 0.5
  174. pred_x2y2 = ctr_pred + wh_pred * 0.5
  175. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  176. all_obj_preds.append(obj_pred)
  177. all_cls_preds.append(cls_pred)
  178. all_box_preds.append(box_pred)
  179. all_reg_preds.append(reg_pred)
  180. all_anchors.append(anchors)
  181. if not self.training:
  182. bboxes, scores, labels = self.post_process(all_obj_preds, all_cls_preds, all_box_preds)
  183. outputs = {
  184. "scores": scores,
  185. "labels": labels,
  186. "bboxes": bboxes
  187. }
  188. else:
  189. outputs = {"pred_obj": all_obj_preds, # List(Tensor) [B, M, 1]
  190. "pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  191. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  192. "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4]
  193. "anchors": all_anchors, # List(Tensor) [M, 2]
  194. "strides": self.out_stride, # List(Int) [8, 16, 32]
  195. }
  196. return outputs