loss.py 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143
  1. import torch
  2. import torch.nn.functional as F
  3. from .matcher import SimOTA
  4. from utils.box_ops import get_ious
  5. from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
  6. class SetCriterion(object):
  7. def __init__(self, cfg):
  8. self.cfg = cfg
  9. self.num_classes = cfg.num_classes
  10. # loss weight
  11. self.loss_obj_weight = cfg.loss_obj
  12. self.loss_cls_weight = cfg.loss_cls
  13. self.loss_box_weight = cfg.loss_box
  14. # matcher
  15. self.matcher = SimOTA(
  16. num_classes=self.num_classes,
  17. center_sampling_radius=cfg.ota_center_sampling_radius,
  18. topk_candidate=cfg.ota_topk_candidate
  19. )
  20. def loss_objectness(self, pred_obj, gt_obj):
  21. loss_obj = F.binary_cross_entropy_with_logits(pred_obj, gt_obj, reduction='none')
  22. return loss_obj
  23. def loss_classes(self, pred_cls, gt_label):
  24. loss_cls = F.binary_cross_entropy_with_logits(pred_cls, gt_label, reduction='none')
  25. return loss_cls
  26. def loss_bboxes(self, pred_box, gt_box):
  27. # regression loss
  28. ious = get_ious(pred_box, gt_box, "xyxy", 'giou')
  29. loss_box = 1.0 - ious
  30. return loss_box
  31. def __call__(self, outputs, targets):
  32. """
  33. outputs['pred_obj']: List(Tensor) [B, M, 1]
  34. outputs['pred_cls']: List(Tensor) [B, M, C]
  35. outputs['pred_box']: List(Tensor) [B, M, 4]
  36. outputs['pred_box']: List(Tensor) [B, M, 4]
  37. outputs['strides']: List(Int) [8, 16, 32] output stride
  38. targets: (List) [dict{'boxes': [...],
  39. 'labels': [...],
  40. 'orig_size': ...}, ...]
  41. """
  42. fpn_strides = outputs['strides']
  43. anchors = outputs['anchors']
  44. # preds: [B, M, C]
  45. obj_preds = torch.cat(outputs['pred_obj'], dim=1)
  46. cls_preds = torch.cat(outputs['pred_cls'], dim=1)
  47. box_preds = torch.cat(outputs['pred_box'], dim=1)
  48. device = box_preds.device
  49. bs = box_preds.shape[0]
  50. # label assignment
  51. cls_targets = []
  52. box_targets = []
  53. obj_targets = []
  54. fg_masks = []
  55. for batch_idx in range(bs):
  56. tgt_labels = targets[batch_idx]["labels"].to(device)
  57. tgt_bboxes = targets[batch_idx]["boxes"].to(device)
  58. # check target
  59. if len(tgt_labels) == 0 or tgt_bboxes.max().item() == 0.:
  60. num_anchors = sum([ab.shape[0] for ab in anchors])
  61. # There is no valid gt
  62. cls_target = obj_preds.new_zeros((0, self.num_classes))
  63. box_target = obj_preds.new_zeros((0, 4))
  64. obj_target = obj_preds.new_zeros((num_anchors, 1))
  65. fg_mask = obj_preds.new_zeros(num_anchors).bool()
  66. else:
  67. (
  68. fg_mask,
  69. assigned_labels,
  70. assigned_ious,
  71. assigned_indexs
  72. ) = self.matcher(
  73. fpn_strides = fpn_strides,
  74. anchors = anchors,
  75. pred_obj = obj_preds[batch_idx],
  76. pred_cls = cls_preds[batch_idx],
  77. pred_box = box_preds[batch_idx],
  78. tgt_labels = tgt_labels,
  79. tgt_bboxes = tgt_bboxes
  80. )
  81. obj_target = fg_mask.unsqueeze(-1)
  82. cls_target = F.one_hot(assigned_labels.long(), self.num_classes)
  83. cls_target = cls_target * assigned_ious.unsqueeze(-1)
  84. box_target = tgt_bboxes[assigned_indexs]
  85. cls_targets.append(cls_target)
  86. box_targets.append(box_target)
  87. obj_targets.append(obj_target)
  88. fg_masks.append(fg_mask)
  89. cls_targets = torch.cat(cls_targets, 0)
  90. box_targets = torch.cat(box_targets, 0)
  91. obj_targets = torch.cat(obj_targets, 0)
  92. fg_masks = torch.cat(fg_masks, 0)
  93. num_fgs = fg_masks.sum()
  94. if is_dist_avail_and_initialized():
  95. torch.distributed.all_reduce(num_fgs)
  96. num_fgs = (num_fgs / get_world_size()).clamp(1.0)
  97. # ------------------ Objecntness loss ------------------
  98. loss_obj = self.loss_objectness(obj_preds.view(-1, 1), obj_targets.float())
  99. loss_obj = loss_obj.sum() / num_fgs
  100. # ------------------ Classification loss ------------------
  101. cls_preds_pos = cls_preds.view(-1, self.num_classes)[fg_masks]
  102. loss_cls = self.loss_classes(cls_preds_pos, cls_targets)
  103. loss_cls = loss_cls.sum() / num_fgs
  104. # ------------------ Regression loss ------------------
  105. box_preds_pos = box_preds.view(-1, 4)[fg_masks]
  106. loss_box = self.loss_bboxes(box_preds_pos, box_targets)
  107. loss_box = loss_box.sum() / num_fgs
  108. # total loss
  109. losses = self.loss_obj_weight * loss_obj + \
  110. self.loss_cls_weight * loss_cls + \
  111. self.loss_box_weight * loss_box
  112. # Loss dict
  113. loss_dict = dict(
  114. loss_obj = loss_obj,
  115. loss_cls = loss_cls,
  116. loss_box = loss_box,
  117. losses = losses
  118. )
  119. return loss_dict