yolov4.py 9.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244
  1. import torch
  2. import torch.nn as nn
  3. from utils.misc import multiclass_nms
  4. # --------------- Model components ---------------
  5. from .yolov4_backbone import Yolov4Backbone
  6. from .yolov4_neck import SPPFBlockCSP
  7. from .yolov4_pafpn import Yolov4PaFPN
  8. from .yolov4_head import DecoupledHead
  9. # --------------- External components ---------------
  10. from utils.misc import multiclass_nms
  11. class Yolov4(nn.Module):
  12. def __init__(self, cfg, is_val: bool = False) -> None:
  13. super(Yolov4, self).__init__()
  14. # ---------------------- Basic setting ----------------------
  15. self.cfg = cfg
  16. self.num_classes = cfg.num_classes
  17. self.out_stride = cfg.out_stride
  18. self.num_levels = len(cfg.out_stride)
  19. ## Post-process parameters
  20. self.topk_candidates = cfg.val_topk if is_val else cfg.test_topk
  21. self.conf_thresh = cfg.val_conf_thresh if is_val else cfg.test_conf_thresh
  22. self.nms_thresh = cfg.val_nms_thresh if is_val else cfg.test_nms_thresh
  23. self.no_multi_labels = False if is_val else True
  24. # ------------------- Anchor box setting -------------------
  25. self.num_anchors = len(cfg.anchor_size) // self.num_levels
  26. self.anchor_size = torch.as_tensor(
  27. cfg.anchor_size
  28. ).float().view(self.num_levels, self.num_anchors, 2) # [nl, na, 2]
  29. # ------------------- Network Structure -------------------
  30. self.backbone = Yolov4Backbone(use_pretrained=cfg.use_pretrained)
  31. self.neck = SPPFBlockCSP(self.backbone.feat_dims[-1], self.backbone.feat_dims[-1], expand_ratio=0.5)
  32. self.fpn = Yolov4PaFPN(self.backbone.feat_dims[-3:], head_dim=cfg.head_dim)
  33. self.non_shared_heads = nn.ModuleList([DecoupledHead(cfg, in_dim)
  34. for in_dim in self.fpn.fpn_out_dims
  35. ])
  36. ## 预测层
  37. self.obj_preds = nn.ModuleList(
  38. [nn.Conv2d(head.reg_head_dim, 1 * self.num_anchors, kernel_size=1)
  39. for head in self.non_shared_heads
  40. ])
  41. self.cls_preds = nn.ModuleList(
  42. [nn.Conv2d(head.cls_head_dim, self.num_classes * self.num_anchors, kernel_size=1)
  43. for head in self.non_shared_heads
  44. ])
  45. self.reg_preds = nn.ModuleList(
  46. [nn.Conv2d(head.reg_head_dim, 4 * self.num_anchors, kernel_size=1)
  47. for head in self.non_shared_heads
  48. ])
  49. # init pred layers
  50. self.init_weight()
  51. def init_weight(self):
  52. # Init bias
  53. init_prob = 0.01
  54. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  55. # obj pred
  56. for obj_pred in self.obj_preds:
  57. b = obj_pred.bias.view(1, -1)
  58. b.data.fill_(bias_value.item())
  59. obj_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  60. # cls pred
  61. for cls_pred in self.cls_preds:
  62. b = cls_pred.bias.view(1, -1)
  63. b.data.fill_(bias_value.item())
  64. cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  65. # reg pred
  66. for reg_pred in self.reg_preds:
  67. b = reg_pred.bias.view(-1, )
  68. b.data.fill_(1.0)
  69. reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  70. w = reg_pred.weight
  71. w.data.fill_(0.)
  72. reg_pred.weight = torch.nn.Parameter(w, requires_grad=True)
  73. def generate_anchors(self, level, fmp_size):
  74. """
  75. fmp_size: (List) [H, W]
  76. """
  77. fmp_h, fmp_w = fmp_size
  78. # [KA, 2]
  79. anchor_size = self.anchor_size[level]
  80. # generate grid cells
  81. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  82. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  83. # [HW, 2] -> [HW, KA, 2] -> [M, 2]
  84. anchor_xy = anchor_xy.unsqueeze(1).repeat(1, self.num_anchors, 1)
  85. anchor_xy = anchor_xy.view(-1, 2)
  86. anchor_xy += 0.5
  87. # [KA, 2] -> [1, KA, 2] -> [HW, KA, 2] -> [M, 2]
  88. anchor_wh = anchor_size.unsqueeze(0).repeat(fmp_h*fmp_w, 1, 1)
  89. anchor_wh = anchor_wh.view(-1, 2)
  90. anchors = torch.cat([anchor_xy, anchor_wh], dim=-1)
  91. return anchors
  92. def post_process(self, obj_preds, cls_preds, box_preds):
  93. """
  94. We process predictions at each scale hierarchically
  95. Input:
  96. obj_preds: List[torch.Tensor] -> [[B, M, 1], ...], B=1
  97. cls_preds: List[torch.Tensor] -> [[B, M, C], ...], B=1
  98. box_preds: List[torch.Tensor] -> [[B, M, 4], ...], B=1
  99. Output:
  100. bboxes: np.array -> [N, 4]
  101. scores: np.array -> [N,]
  102. labels: np.array -> [N,]
  103. """
  104. all_scores = []
  105. all_labels = []
  106. all_bboxes = []
  107. for obj_pred_i, cls_pred_i, box_pred_i in zip(obj_preds, cls_preds, box_preds):
  108. obj_pred_i = obj_pred_i[0]
  109. cls_pred_i = cls_pred_i[0]
  110. box_pred_i = box_pred_i[0]
  111. if self.no_multi_labels:
  112. # [M,]
  113. scores, labels = torch.max(torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid()), dim=1)
  114. # Keep top k top scoring indices only.
  115. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  116. # topk candidates
  117. predicted_prob, topk_idxs = scores.sort(descending=True)
  118. topk_scores = predicted_prob[:num_topk]
  119. topk_idxs = topk_idxs[:num_topk]
  120. # filter out the proposals with low confidence score
  121. keep_idxs = topk_scores > self.conf_thresh
  122. scores = topk_scores[keep_idxs]
  123. topk_idxs = topk_idxs[keep_idxs]
  124. labels = labels[topk_idxs]
  125. bboxes = box_pred_i[topk_idxs]
  126. else:
  127. # [M, C] -> [MC,]
  128. scores_i = torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid()).flatten()
  129. # Keep top k top scoring indices only.
  130. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  131. # torch.sort is actually faster than .topk (at least on GPUs)
  132. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  133. topk_scores = predicted_prob[:num_topk]
  134. topk_idxs = topk_idxs[:num_topk]
  135. # filter out the proposals with low confidence score
  136. keep_idxs = topk_scores > self.conf_thresh
  137. scores = topk_scores[keep_idxs]
  138. topk_idxs = topk_idxs[keep_idxs]
  139. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  140. labels = topk_idxs % self.num_classes
  141. bboxes = box_pred_i[anchor_idxs]
  142. all_scores.append(scores)
  143. all_labels.append(labels)
  144. all_bboxes.append(bboxes)
  145. scores = torch.cat(all_scores, dim=0)
  146. labels = torch.cat(all_labels, dim=0)
  147. bboxes = torch.cat(all_bboxes, dim=0)
  148. # to cpu & numpy
  149. scores = scores.cpu().numpy()
  150. labels = labels.cpu().numpy()
  151. bboxes = bboxes.cpu().numpy()
  152. # nms
  153. scores, labels, bboxes = multiclass_nms(
  154. scores, labels, bboxes, self.nms_thresh, self.num_classes)
  155. return bboxes, scores, labels
  156. def forward(self, x):
  157. bs = x.shape[0]
  158. pyramid_feats = self.backbone(x)
  159. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  160. pyramid_feats = self.fpn(pyramid_feats)
  161. all_fmp_sizes = []
  162. all_obj_preds = []
  163. all_cls_preds = []
  164. all_box_preds = []
  165. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  166. cls_feat, reg_feat = head(feat)
  167. # [B, C, H, W]
  168. obj_pred = self.obj_preds[level](reg_feat)
  169. cls_pred = self.cls_preds[level](cls_feat)
  170. reg_pred = self.reg_preds[level](reg_feat)
  171. fmp_size = cls_pred.shape[-2:]
  172. # generate anchor boxes: [M, 4]
  173. anchors = self.generate_anchors(level, fmp_size)
  174. anchors = anchors.to(x.device)
  175. # [B, AC, H, W] -> [B, H, W, AC] -> [B, M, C]
  176. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 1)
  177. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, self.num_classes)
  178. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 4)
  179. # decode bbox
  180. ctr_pred = (torch.sigmoid(reg_pred[..., :2]) * 3.0 - 1.5 + anchors[..., :2]) * self.out_stride[level]
  181. wh_pred = torch.exp(reg_pred[..., 2:]) * anchors[..., 2:]
  182. pred_x1y1 = ctr_pred - wh_pred * 0.5
  183. pred_x2y2 = ctr_pred + wh_pred * 0.5
  184. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  185. all_obj_preds.append(obj_pred)
  186. all_cls_preds.append(cls_pred)
  187. all_box_preds.append(box_pred)
  188. all_fmp_sizes.append(fmp_size)
  189. if not self.training:
  190. bboxes, scores, labels = self.post_process(all_obj_preds, all_cls_preds, all_box_preds)
  191. outputs = {
  192. "scores": scores,
  193. "labels": labels,
  194. "bboxes": bboxes
  195. }
  196. else:
  197. outputs = {"pred_obj": all_obj_preds, # List [B, M, 1]
  198. "pred_cls": all_cls_preds, # List [B, M, C]
  199. "pred_box": all_box_preds, # List [B, M, 4]
  200. "fmp_sizes": all_fmp_sizes, # List
  201. "strides": self.out_stride, # List
  202. }
  203. return outputs